Excess fluoride intake has been linked with various pathological conditions. The objective of the present study was to understand the role of fluoride in neurotoxic, neuroinflammatory, and neurodegenerative changes in the brain tissue of Wistar rats. Wistar rats were fed with water containing 20-100 ppm (ppm) sodium fluoride (NaF).
View Article and Find Full Text PDFThis study was conducted to provide a mechanistic account for understanding the synthesis, characterization and solubility phenomena of vitamin complexes with cyclodextrins (CD) for enhanced solubility and stability employing experimental and in silico molecular modeling strategies. New geometric, molecular and energetic analyses were pursued to explicate experimentally derived cholecalciferol complexes. Various CD molecules (α-, β-, γ-, and hydroxypropyl β-) were complexed with three vitamins: cholecalciferol, ascorbic acid and α-tocopherol.
View Article and Find Full Text PDFA multifunctional platform to deliver three diverse proteins of insulin, interferon beta (INF-β) and erythropoietin (EPO), using a novel copolymeric microparticulate system of TMC-PEGDMA-MAA, was synthesised as an intelligent pH-responsive 2-fold gastric and intestinal absorptive system. Physiochemical and physicomechanical studies proved the degree of crystallinity that supported the controlled protein delivery of the microparticulate system. The copolymer was tableted before undertaking in vitro and in vivo analysis.
View Article and Find Full Text PDFIn this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h.
View Article and Find Full Text PDFThe efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases.
View Article and Find Full Text PDFThis study reports the use of biocompatible and biodegradable polymers for the formulation and design of an implantable multipolymeric drug delivery device (MDDD) for the management of AIDS dementia complex (ADC), a debilitating condition affecting the cognitive, motor and behavioral systems in HIV+ individuals. A 3-factor Box-Behnken statistical design was employed for the optimization of nanoparticle and multipolymeric scaffold formulations. Fifteen formulations were generated using the Box-Behnken template, which were assessed for physicochemical and physicomechanical characterization.
View Article and Find Full Text PDFBackground: Before the 1930s, squamous cell carcinoma (SCC) of the oesophagus was almost unknown among black South Africans. From the 1930s the annual frequency rose. A dietary cause was sought, the staple diet of black people having changed from sorghum to maize (corn), with traditional beer being brewed from maize.
View Article and Find Full Text PDFFew researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule.
View Article and Find Full Text PDFThis review highlights recent interests and applications of disulphide and thiol chemistry in creating contemporary macromolecular designs. Due to the chemical nature of disulphides and thiols a wide range of chemical species react with these functional groups to yield a variety of polymers extending their applications in chemical, biological, physical, material engineering and material sciences. The review aims to illustrate the versatility and demonstrate the potential of thiol-based chemistries.
View Article and Find Full Text PDFThe drug treatment of acute disorders such as neuropathic pain, migraines, insomnia, vomiting, allergic rhinitis or erectile dysfunction requires an immediate pharmacological effect that may be achieved through parenteral drug administration. However, the parenteral route is not always convenient for reasons that are well known. Therefore, in the recent past there has been a barrage of interest in formulating new, non-invasive, reliable and convenient oradispersible drug delivery technologies (ODDTs).
View Article and Find Full Text PDFA menthol-based solid dispersion was designed to improve the intrinsic solubility of the poorly soluble sulfamethoxazole- a class II drug molecule of Biopharmaceutics Classification System (BCS) displaying widespread antibacterial activity. Solid dispersions of menthol and sulfamethoxazole were compressed with hydroxypropyl methylcellulose (HPMC) into suitable sulfamethoxazole-loaded matrix tablets for oral drug delivery. The sulfamethoxazole-loaded solid dispersions and compressed tablets were characterized for their physicochemical and physicomechanical properties such as changes in crystallinity, melting point, molecular transitions, and textural analysis for critical analysis of their effects on the solubility and dissolution of sulfamethoxazole.
View Article and Find Full Text PDFContext And Objective: The aim of this study was to develop, characterize and evaluate a mucoadhesive caplet resulting from a polymeric blend (polymeric caplet) for intravaginal anti-HIV-1 delivery.
Materials And Methods: Poly(lactic-co-glycolic) acid, ethylcellulose, poly(vinylalcohol), polyacrylic acid and modified polyamide 6, 10 polymers were blended and compressed to a caplet-shaped device, with and without two model drugs 3'-azido-3'-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Thermal analysis, infrared spectroscopy and microscopic analysis were carried out on the caplets employing temperature-modulated DSC (TMDSC), Fourier transform infra-red (FTIR) spectrometer and scanning electron microscope, respectively.
Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered.
View Article and Find Full Text PDFThis study focused on the synthesis and characterization of a natural polymeric system employing the interpenetrating polymer network (IPN) comprising curcumin as a bioactive. Biopolymers and actives such as chitosan, hypromellose, citric acid, genipin, and curcumin were used to develop an effective, biodegradable, and biocompatible film employed therapeutically as a wound healing platform. The semi-IPN films were investigated for their physicochemical, physicomechanical, and biological properties by quantification by FTIR, DSC, and Young's modulus.
View Article and Find Full Text PDFOcular diseases of the anterior segment of the eye are increasing and the development of novel drug delivery systems for improved treatment is necessary. The aim of this study was therefore to design and evaluate an instantly-soluble solid eye drop (ISED) for topical ophthalmic drug delivery of the model drug timolol maleate. The porous nature of the lyophilized ISED resulted in rapid fluid ingression, immediate hydration, and dissolution of the ocular matrix.
View Article and Find Full Text PDFThe current study involved the development of a novel sustained release crosslinked semi-IPN xerogel matrix tablet prepared by chemical crosslinking of poly(ethylene) oxide (PEO) and gellan gum (GG) employing epichlorohydrin (EPI) as crosslinker. A Box-Behnken design was employed for the statistical optimization of the matrix system to ascertain the ideal combination of native polymeric and crosslinking agents. Characterization studies were performed by employing standard polymer characterization techniques such as Fourier transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy.
View Article and Find Full Text PDFObjectives: The human eye is a unique and intricate structure which has made drug delivery to the eye a formidable undertaking. Anterior-segment eye diseases are ubiquitous, especially among elderly patients, and conventional eye drops, although a first-choice dosage form, are not always an efficient treatment option. The development of novel drug delivery systems for improved treatment is therefore imperative.
View Article and Find Full Text PDFThe purpose of this study was to investigate the in-depth pharmaceutical properties and in vivo behavior of a novel lyophilized rapidly dissolving solid ocular matrix (RD-SOM) as a 'solid eye drop' formulation comprising timolol maleate as the model drug. Thermal and molecular transition analysis displayed similar findings with no incompatibility between formulation components. Porositometric studies confirmed the presence of interconnecting pores across the matrix surface.
View Article and Find Full Text PDFPurpose: Nanomedicine explores and allows for the development of drug delivery devices with superior drug uptake, controlled release and fewer drug side-effects. This study explored the use of nanosystems to formulate an implantable drug delivery device capable of sustained zidovudine release over a prolonged period.
Methods: Pectin and alginate nanoparticles were prepared by applying a salting out and controlled gelification approach, respectively.
pH-sensitive microparticles were prepared using trimethyl-chitosan (TMC), poly(ethylene glycol)dimethacrylate (PEGDMA) and methacrylic acid (MAA) by free radical suspension polymerization, for the oral delivery of interferon-β (INF-β). The microparticles were subsequently compressed into a suitable oral tablet formulation. A Box-Behnken experimental design was employed for generating a series of formulations with varying concentrations of TMC (0.
View Article and Find Full Text PDFDrug release from hydrophilic matrices is regulated mainly by polymeric erosion, disentanglement, dissolution, swelling front movement, drug dissolution and diffusion through the polymeric matrix. These processes depend upon the interaction between the dissolution media, polymeric matrix and drug molecules, which can be significantly influenced by formulation variables and excipients. This study utilized mathematical parameters to evaluate the impacts of selected formulation variables and various excipients on the release performance of hydrophilic polyamide 6,10 (PA 6,10) monolithic matrix.
View Article and Find Full Text PDFElectroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion.
View Article and Find Full Text PDFRecent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests.
View Article and Find Full Text PDF