Publications by authors named "Lomaglio T"

Biochar is a potential candidate for the remediation of metal(loid)-contaminated soils. However, the mechanisms of contaminant-biochar retention and release depend on the amount of soil contaminants and physicochemical characteristics, as well as the durability of the biochar contaminant complex, which may be related to the pyrolysis process parameters. The objective of the present study was to evaluate, in a former contaminated smelting site, the impact of two doses of wood biochar (2 and 5% w/w) on metal immobilization and/or phytoavailability and their effectiveness in promoting plant growth in mesocosm experiments.

View Article and Find Full Text PDF

The synergistic activity between plants and microorganisms may contribute to the implementation of proactive management strategies in the stabilization of contaminated sites, although heavy metals, such as cadmium (Cd), are potentially toxic to them. The aim of this study was to evaluate the degree of tolerance to Cd contamination (supplying twice 40 mg kg(-1) of Cd) in poplar cuttings [clone I-214, P. × euramericana (Dode) Guinier] inoculated or not with two concentrations of Serratia marcescens strain (1 × 10(7) CFU/g and 2 × 10(7) CFU/g of potting mix).

View Article and Find Full Text PDF

Pollution by toxic metals, accumulating into soils as result of human activities, is a worldwide major concern in industrial countries. Plants exhibit different degrees of tolerance to heavy metals, as a consequence of their ability to exclude or accumulate them in particular tissues, organs or sub-cellular compartments. Molecular information about cellular processes affected by heavy metals is still largely incomplete.

View Article and Find Full Text PDF

Grafting can enhance the tolerance of vegetable crops to soilborne diseases. The aim of this study was to investigate whether different tomato scion-rootstock combinations may affect the plant susceptibility to Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

Plants, as sessile organisms, are continuously exposed to temperature changes in the environment. Low and high temperature stresses have a great impact on agricultural productivity, since they significantly alter plant metabolism and physiology. Plant response to temperature stress is a quantitative character, being influenced by the degree of stress, time of exposure, as well as plant adaptation ability; it involves profound cellular changes at the proteomic level.

View Article and Find Full Text PDF

Endogenous analogues of capsaicin, N-acyldopamines, were previously identified from striatal extracts, but the putative presynaptic role of their receptor, the TRPV(1)R (formerly: vanilloid or capsaicin receptor) in the caudate-putamen is unclear. We found that the endogenous TRPV(1)R agonists, N-arachidonoyldopamine (NADA) and oleoyldopamine (OLDA) with EC(50) values in the nanomolar range, as well as the synthetic TRPV(1)R activator 2-aminoethoxydiphenylborane (2APB), and palmytoyldopamine (PALDA, another endogenous N-acyldopamine inactive at the TRPV(1)R), but not capsaicin or other endogenous and synthetic cannabinoids, triggered a rapid Ca(2+) entry with the concomitant stimulation of glutamate and dopamine release. These effects persisted in the TRPV(1)R null-mutant mice, and were insensitive to antagonists of common ionotropic receptors, to several TRPV(1)R antagonists and to the absence of K(+).

View Article and Find Full Text PDF