Background: Opioid use disorder is a chronic relapsing disorder. The brain adapts to opioids that are taken for pain treatment or recreational use so that abstinence becomes a true challenge for individuals with opioid use disorder. Studying brain dysfunction at this stage is difficult, and human neuroimaging has provided highly heterogeneous information.
View Article and Find Full Text PDFBackground: Chronic opioid exposure leads to hedonic deficits and enhanced vulnerability to addiction, which are observed and even strengthen after a period of abstinence, but the underlying circuit mechanisms are poorly understood. In this study, using both molecular and behavioral approaches, we tested the hypothesis that neurons expressing mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) are involved in addiction vulnerability associated with morphine abstinence.
Methods: MOR-Cre mice were exposed to chronic morphine and then went through spontaneous withdrawal for 4 weeks, a well-established mouse model of morphine abstinence.
Background: Mu opioid receptors (MORs) are key for reward processing, mostly studied in dopaminergic pathways. MORs are also expressed in the dorsal raphe nucleus (DRN), which is central for the modulation of reward and mood, but MOR function in the DRN remains underexplored. Here, we investigated whether MOR-expressing neurons of the DRN (DRN-MOR neurons) participate in reward and emotional responses.
View Article and Find Full Text PDFOpioid use disorder (OUD) is characterized by the development of a negative emotional state that develops after a history of long-term exposure to opioids. OUD represents a true challenge for treatment and relapse prevention. Human research has amply documented emotional disruption in individuals with an opioid substance use disorder, at both behavioral and brain activity levels; however, brain mechanisms underlying this particular facet of OUD are only partially understood.
View Article and Find Full Text PDF