Neonatal mice have been shown to regenerate their hearts during a transient window of time of approximately 1 week after birth. However, experimental evidence for this phenomenon is not undisputed, because several laboratories have been unable to detect neonatal heart regeneration. We first confirmed that 1-day-old neonatal mice are indeed able to mount a robust regenerative response after heart amputation.
View Article and Find Full Text PDFAdult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation.
View Article and Find Full Text PDFCharacterization of pluripotent stem cells is required for the registration of stem cell lines and allows for an impartial and objective comparison of the results obtained when generating multiple lines. It is therefore crucial to establish specific, fast and reliable protocols to detect the hallmarks of pluripotency. Such protocols should include immunocytochemistry (takes 2 d), identification of the three germ layers in in vitro-derived embryoid bodies by immunocytochemistry (immunodetection takes 3 d) and detection of differentiation markers in in vivo-generated teratomas by immunohistochemistry (differentiation marker detection takes 4 d).
View Article and Find Full Text PDF