Publications by authors named "Lokhonina A"

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages.

View Article and Find Full Text PDF

There is still much to learn about the epigenetic mechanisms controlling gene expression during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study was to investigate the methylation status of , , , , , and genes in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative HNSCC.

View Article and Find Full Text PDF

Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment.

View Article and Find Full Text PDF

Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality.

View Article and Find Full Text PDF

Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted on Sprague-Dawley rats (n=10) to examine lung and macrophage changes after inducing acute respiratory distress syndrome (ARDS) using E. coli LPS.
  • The first day post-LPS treatment showed bronchopneumonia, increased numbers of bone marrow-derived macrophages and M1 proinflammatory macrophages, along with rising proinflammatory cytokines and lower anti-inflammatory cytokines.
  • These findings mirrored human ARDS, highlighting reduced lung macrophages and their shift toward a proinflammatory state, which supports the potential use of cell therapy with reprogrammed M2 macrophages to treat ARDS.
View Article and Find Full Text PDF

Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance.

View Article and Find Full Text PDF

The role of the immune system in liver repair is fundamentally complex and most likely involves the spleen. The close connection between the two organs via the portal vein enables delivery of splenic cytokines and living cells to the liver. This study evaluates expression of inflammation-related genes and assesses the dynamics of monocyte-macrophage and lymphocyte populations of the spleen during the recovery from 70% hepatectomy in mice.

View Article and Find Full Text PDF

Background: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals.

View Article and Find Full Text PDF

Head-and-neck cancers constitute a heterogeneous group of aggressive tumors with high incidence and low survival rates, collectively being the sixth most prevalent cancer type globally. About 90% of head-and-neck cancers are classified as squamous cell carcinomas (HNSCC). The innate and adaptive immune systems, indispensable for anti-cancer immune surveillance, largely define the rates of HNSCC emergence and progression.

View Article and Find Full Text PDF

In squamous cell carcinoma of the larynx, the population of epithelial cells in the tumor tissue is initially heterogeneous and, in addition to tumor cells invading the organ mucosa, includes normal epithelial cells of protein-mucous glands and cells of the stratified epithelium covering the mucous membrane. A search for differential markers to separate these subpopulations was carried out. The surface marker CD44 and cytokeratins 5 and 17 that are often used to verify carcinoma cells, are common markers for all epithelial cells of the larynx.

View Article and Find Full Text PDF

Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.

View Article and Find Full Text PDF

Background: Macrophages play a key role in liver regeneration. The fates of resident macrophages after 70% resection are poorly investigated. In this work, using the MARCO macrophage marker (abbreviated from macrophage receptor with collagenous structure), we studied the dynamics of mouse liver resident macrophages after 70% resection.

View Article and Find Full Text PDF

Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome.

View Article and Find Full Text PDF

Macrophages are a central component of innate immunity that play an important role in the defense of the organism. Macrophages are highly plastic and are activated by interaction with other cells and environmental factors. In this work, we study the effect of lipopolysaccharide on macrophages derived from the two most polar (CD14+ and CD16+ monocytes) as well as the intermediate subset of blood monocytes from healthy donors and assess what happens to the subset most prone to polarization on the transcriptomic and proteomic level.

View Article and Find Full Text PDF

Macrophages are important regulators of liver repair. Participation of migratory monocytes/macrophages in regeneration of hepatic tissues after resection remains disputable. In mouse the resection promotes migration of Ly6C+CD11b+ monocytes/macrophages to the remnant liver accompanied by a reduction in its CD206 + macrophage content.

View Article and Find Full Text PDF

Introduction: Preeclampsia is a pregnancy-specific complication characterized by hypertension in combination with proteinuria and/or various manifestations of multiple organ failure. It is believed that etiology of preeclampsia lies in dysfunction of the placenta and disorder of the maternal-fetal interactions. In preeclampsia decidual membrane, the maternal part of the placenta which normally supports immunological tolerance of the maternal organism to the semi-allogeneic fetus, becomes a site of inflammation.

View Article and Find Full Text PDF

Macrophage populations in most mammalian organs consist of cells of different origin. Resident macrophages originate from erythromyeloid precursors of the yolk sac wall; maintenance of the numbers of such macrophages in postnatal ontogenesis is practically independent of bone marrow haematopoiesis. The largest populations of the resident macrophages of embryonic origin are found in the central nervous system (microglia) and liver (Kupffer cells).

View Article and Find Full Text PDF

Functional and anatomical connection between the liver and the spleen is most clearly manifested in various pathological conditions of the liver (cirrhosis, hepatitis). The mechanisms of the interaction between the two organs are still poorly understood, as there have been practically no studies on the influence exerted by the spleen on the normal liver. Mature male Sprague-Dawley rats of 250-260 g body weight, 3 months old, were splenectomized.

View Article and Find Full Text PDF

The study was carried out using a novel rat model developed in our laboratory, namely16 mm diameter circular excisional wounds were generated on the abdomen which resulted in minimal scarring. Restoration of the skin integrity was completed by day 60 after the wounding surgery. By this time, regenerates on the abdomen were stronger than on the back (at, respectively, 58 and 17.

View Article and Find Full Text PDF

Differences in the gene expression profiles in resident macrophages (in particular, Kupffer cells) and monocytes were revealed. However, these differences in gene expression profiles do not allow considering resident liver macrophages as purely M2 macrophages and monocytes as purely M1 macrophages. At the same time, a significant number of the genes upregulated in Kupffer cells are associated with normal regulation of liver functions (Arg 1, Flt, iNOs, and Kng).

View Article and Find Full Text PDF

Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology.

View Article and Find Full Text PDF

At the normal physiological conditions, hepatocytes predominantly reside in G0 phase of cell cycle; they actively proceed to G1 phase upon damage to the organ. As it was shown in experiments with restoration of liver mass in rats after subtotal hepatectomy (resection of 80% of the organ mass may be considered as a model of the 'small for size' liver syndrome), the growth inhibition is due to prolonged arrest of hepatocyte proliferation, molecular mechanisms of which remain understudied. In a rat model of liver regeneration after surgical removal of 80% of its mass, we observe a delayed onset of hepatocyte proliferation: Ki67 hepatocytes begin to appear as late as at 30 h after liver subtotal resection.

View Article and Find Full Text PDF

We compared phagocytic activity of macrophages of monocyte origin and Kupffer cells under the influence of M1 and M2 inducers and without activation. Cultures of monocyte-derived macrophages and Kupffer cells were characterized by intensive expression of CD68 that was not affected by activation factors. At the same time, these cultures demonstrated different dynamics of phagocytic activity.

View Article and Find Full Text PDF

In the central nervous system and in the liver, the macrophage populations are represented exclusively by descendants of the hematopoietic progenitor cells of the yolk sac. The reasons for such differential distribution of macrophages are not fully understood. We found that, as can be judged by corresponding changes in the expression of CD86 and CD163 markers, the transient macrophages of monocytic lineage are more sensitive to activating stimuli.

View Article and Find Full Text PDF