The effects of feeding rats with groundnut oil (GNO), rice bran oil (RBO), and sesame oil (SESO) on serum lipids, liver lipids, and inflammatory markers were evaluated in rats. Male Wistar rats were fed with AIN-93 diet supplemented with 10 wt% of GNO, RBO, and SESO in the form of native (N) and minor constituent-removed (MCR) oils. Rats given RBO and SESO showed significant reduction in serum and liver lipids, 8-hydroxy-2-deoxyguanosine, cytokines in liver, and eicosanoids in leukocytes as compared with the rats given GNO and MCR oils.
View Article and Find Full Text PDFThough present in small amounts, the minor constituents of dietary oils may supplement the dietary therapies for rheumatoid arthritis (RA). Hence, in the present study, we assessed the effect of minor constituents from sesame oil (SO) and rice bran oil (RBO) and their fatty acids on the severity of adjuvant-induced arthritis in experimental rats. Rats were gavaged with 1 mL of SO or RBO or groundnut oil (GNO, control) with or without its minor components for a period 15 days before and 15 days after the induction of arthritis.
View Article and Find Full Text PDFCurcumin and capsaicin are dietary xenobiotics with well-documented anti-inflammatory properties. Previously, the beneficial effect of these spice principles in lowering chronic inflammation was demonstrated using a rat experimental model for arthritis. The extent of lowering of arthritic index by the spice principles was associated with a significant shift in macrophage function favoring the reduction of pro-inflammatory molecules such as reactive oxygen species and production and release of anti-inflammatory metabolites of arachidonic acid.
View Article and Find Full Text PDFThis study evaluated the antioxidant activity of vegetable oils using photochemiluminescence based assay. The following oils were selected for the study - palm oil (PO); olive oil (OLO); sunflower oil (SNO); rice bran oil (RBO); sesame oil (SESO) and linseed oil (LSO). The antioxidant activity of oils was reduced significantly when unsaponifiable matter was removed from the oils.
View Article and Find Full Text PDFConjugated linoleic acid (CLA) that is commonly found in dairy and ruminant fats, is geometrical and positional isomer of linoleic acid (LA). Edible oils are not good sources of CLA. Attempts have been made to generate CLA in edible oils through photoisomerization procedures.
View Article and Find Full Text PDFLong chain n-3 fatty acids such as docosahexaenoic acid (DHA) are essential for the normal functioning of the brain. The vegetarian sections of the population get only alpha-linolenic acid (ALA) through their diet as a source of n-3 fatty acids. Hence, in this group of the population, the ALAs need to be converted to DHA through the action of the desaturase and the elongase enzymes.
View Article and Find Full Text PDFThe hypocholesterolemic effects of two low calorie structured lipids (SL1 and SL2) containing essential fatty acids, prepared by lipase catalysed interesterification of ethyl behenate respectively with sunflower and soybean oils were studied in rats and rabbits. The feeding experiment conducted on rats as well as rabbits, fed on normal and atherogenic diet containing 10% of SL1 and SL2 (experimental) and sunflower oil (control) indicated no adverse effects on growth and food intake. However, the structured lipids beneficially lowered serum and liver lipids, particularly cholesterol, LDL cholesterol, triglycerides and also maintains the essential fatty acid status in serum and liver.
View Article and Find Full Text PDFVegetable oils containing α-linolenic acid (ALA; 18 : 3n-3) have been shown to modulate the functions of immunocompetent cells. The aim of the present study was to understand the modulatory effect of ALA-rich garden cress (Lepidium sativum L.) seed oil (GCO) on lipid composition, spleen lymphocyte (SL) proliferation and inflammatory mediator production by peritoneal macrophages (PMΦ) in rats.
View Article and Find Full Text PDFThe concentration of LDL cholesterol in plasma is strongly influenced by the amount and type of lipid in the diet. Our studies have shown that positional changes in the fatty acids in blended oil introduced using lipase-catalyzed interesterification differentially modulate circulating LDL levels in rats compared with those observed in rats given a physical blend of oils. To investigate the molecular basis of these differences, transcriptional profiling of genes involved in cholesterol homeostasis was studied after feeding rats with a semipurified diet containing 10% fat from native oils; coconut oil (CNO), rice bran oil (RBO), or sesame oil (SESO); blended (B); CNO+RBO(B) or CNO+SESO(B) and interesterified oil (I); CNO+RBO(I) or CNO+SESO(I) for 60 d.
View Article and Find Full Text PDFFood Chem Toxicol
January 2011
The present study was undertaken to evaluate the effect of feeding blended and interesterified oils prepared using coconut oil (CNO) with rice bran oil (RBO) or sesame oil (SESO), with a polyunsaturated/saturated (P/S) ratio of 0.8-1.0, on oxidative stress and endogenous antioxidant system.
View Article and Find Full Text PDFWe made a comparative analysis of the uptake, tissue deposition and conversion of dietary alpha-linolenic acid (ALA) to its long chain metabolites eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with preformed EPA + DHA. Diets containing linseed oil [with ALA at approximately 2.5 (4 g/kg diet), 5 (8 g/kg diet), 10 (16 g/kg diet), 25% (40 g/kg diet)] or fish oil [with EPA + DHA at approximately 1 (1.
View Article and Find Full Text PDFThe effects of feeding Wistar rats with blended and interesterified oils of coconut (CO):groundnut (GNO) or CO:olive (OLO) on liver antioxidant enzyme activities and susceptibility of LDL to oxidation were studied. The hepatic lipid peroxidation (LPO) levels in the rats fed CO:GNO blend and interesterified oils were increased by 31% and 21%, when compared to the rats given CO. The superoxide dismutase activity was increased by 31% and 28%, and catalase (CAT) activity was increased by 37% and 39%, respectively, in rats given blends and interesterified oils of CO:GNO, as compared to those given CO.
View Article and Find Full Text PDFBlended oils comprising coconut oil (CNO) and rice bran oil (RBO) or sesame oil (SESO) with saturated fatty acid/monounsaturated fatty acid/polyunsaturated fatty acid at a ratio of 1:1:1 and polyunsaturated/saturated ratio of 0.8-1 enriched with nutraceuticals were prepared. Blended oils (B) were subjected to interesterification reaction using sn-1,3 specific Lipase from Rhizomucor miehei.
View Article and Find Full Text PDFIn our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids.
View Article and Find Full Text PDFLipase-catalyzed interesterification was used to prepare structured TG from coconut oil TG by partially replacing some of the atherogenic saturated FA with stearic acid, which is known to have a neutral effect on lipid levels in the body. The level of stearic acid was increased from 4% in the native coconut oil to 40% in the structured lipids, with most of the stearic acid being incorporated into the sn-1 and sn-3 positions of TG. When structured lipids were fed to rats at a 10% level for a period of 60 d, a 15% decrease in total cholesterol and a 23% decrease in LDL cholesterol levels in the serum were observed when compared to those fed coconut oil.
View Article and Find Full Text PDFCoconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.
View Article and Find Full Text PDF