Publications by authors named "Lok-Yin Roy Wong"

Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection.

View Article and Find Full Text PDF
Article Synopsis
  • Recent vaccination and natural infections have led to a significant drop in severe cases, hospitalizations, and deaths from SARS-CoV-2, despite the emergence of new variants that can evade some immune defenses.
  • Research involving mice showed that they remained protected against a closely related ancestral virus, even with low neutralizing antibodies after exposure to newer variants, suggesting a strong immune response lasting from prior infections.
  • The study highlighted the importance of T cells in providing this protection, as previous infection resulted in higher levels of tissue-resident memory T cells in the nasal area, though less prominent in the lungs.
View Article and Find Full Text PDF

Unlabelled: Respiratory infections are a major health burden worldwide. Respiratory syncytial virus (RSV) is among the leading causes of hospitalization in both young children and older adults. The onset of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the public health response had a profound impact on the normal seasonal outbreaks of other respiratory viruses.

View Article and Find Full Text PDF

encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV.

View Article and Find Full Text PDF

Upon SARS-CoV-2 infection, infected cells undergo necroptosis, whereas delayed apoptosis and pyroptosis occur in uninfected, bystander cells, thus providing a plausible explanation for the extensive injury among myriad uninfected cells.

View Article and Find Full Text PDF

The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies.

View Article and Find Full Text PDF

Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies.

View Article and Find Full Text PDF

The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies.

View Article and Find Full Text PDF

The function of betacoronavirus internal protein has been relatively understudied. The earliest report on the internal protein of mouse hepatitis virus suggested that the internal protein is a structural protein without significant functions in virus replication and virulence. However, the internal proteins of evere cute espiratory yndrome oronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus, and SARS-CoV-2 have been shown to evade immune responses.

View Article and Find Full Text PDF

SARS-CoV-2, the causative agent of COVID-19 encodes at least 16 nonstructural proteins of variably understood function. Nsp3, the largest nonstructural protein contains several domains, including a SARS-unique domain (SUD), which occurs only in . The SUD has a role in preferentially enhancing viral translation.

View Article and Find Full Text PDF

The SARS-CoV-2 Omicron subvariants BA.1 and BA.2 exhibit reduced lung cell infection relative to previously circulating SARS-CoV-2 variants, which may account for their reduced pathogenicity.

View Article and Find Full Text PDF

Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice.

View Article and Find Full Text PDF

The Omicron SARS-CoV-2 variant has been designated as a variant of concern because its spike protein is heavily mutated. In particular, the Omicron spike is mutated at five positions (K417, N440, E484, Q493, and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y, contains a spike that is also heavily mutated, with mutations at four of the five positions in the Omicron spike associated with neutralizing antibody escape (K417, E484, Q493, and N501).

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations.

View Article and Find Full Text PDF
Article Synopsis
  • The Omicron variant B.1.1.529 has raised concerns about its ability to evade vaccine protection and therapeutic antibodies.
  • Research using mice and hamsters revealed that B.1.1.529 caused less severe respiratory infections compared to previous SARS-CoV-2 variants, even though it binds strongly to mouse ACE2.
  • The findings indicate a milder disease response in rodents infected with B.1.1.529, which aligns with some early clinical observations in humans.
View Article and Find Full Text PDF

The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501).

View Article and Find Full Text PDF

Human coronaviruses cause a wide spectrum of disease, ranging from mild common colds to acute respiratory distress syndrome and death. Three highly pathogenic human coronaviruses - severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus and SARS-CoV-2 - have illustrated the epidemic and pandemic potential of human coronaviruses, and a better understanding of their disease-causing mechanisms is urgently needed for the rational design of therapeutics. Analyses of patients have revealed marked dysregulation of the immune system in severe cases of human coronavirus infection, and there is ample evidence that aberrant immune responses to human coronaviruses are typified by impaired induction of interferons, exuberant inflammatory responses and delayed adaptive immune responses.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models.

View Article and Find Full Text PDF

Human Middle East respiratory syndrome (MERS) cases were detected primarily in the Middle East before a major outbreak occurred in South Korea in 2015. The Korean outbreak was initiated by a single infected individual, allowing studies of virus evolution in the absence of further MERS-CoV introduction into human populations. In contrast, MERS is primarily a camel disease on the Arabian Peninsula and in Africa, with clinical disease in humans only in the former location.

View Article and Find Full Text PDF

Worse outcomes occur in aged compared with young populations after infections with respiratory viruses, including pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), and are associated with a suboptimal lung milieu ("inflammaging"). We previously showed that a single inducible phospholipase, PLA2G2D, is associated with a proresolving/antiinflammatory response in the lungs, and increases with age. Survival was increased in naive Pla2g2d-/- mice infected with SARS-CoV resulting from augmented respiratory dendritic cell (rDC) activation and enhanced priming of virus-specific T cells.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations. Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations.

View Article and Find Full Text PDF

Common laboratory mice such as BALB/c and C57BL/6 mice are not permissive to SARS-CoV2 infection. Sensitization of laboratory mice with Adenovirus expressing human ACE2 (Ad5-hACE2) provides a rapid model for testing viral intervention Despite the lack of lethal outcome, Ad5-hACE2-sensitized mice show 20% weight loss on average upon viral challenge with infectious virus being detected at the site of sensitization. This protocol describes the sensitization and subsequent infection of common laboratory mice for use in testing anti-viral interventions.

View Article and Find Full Text PDF

The ongoing coronavirus disease 2019 (COVID-19) pandemic is associated with substantial morbidity and mortality. Although much has been learned in the first few months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation, and many patients with anosmia show no or only minor respiratory symptoms.

View Article and Find Full Text PDF