Publications by authors named "Lok Ming Lui"

Diffusion-weighted imaging (DWI) has been extensively explored in guiding the clinic management of patients with breast cancer. However, due to the limited resolution, accurately characterizing tumors using DWI and the corresponding apparent diffusion coefficient (ADC) is still a challenging problem. In this paper, we aim to address the issue of super-resolution (SR) of ADC images and evaluate the clinical utility of SR-ADC images through radiomics analysis.

View Article and Find Full Text PDF

In medical imaging, surface registration is extensively used for performing systematic comparisons between anatomical structures, with a prime example being the highly convoluted brain cortical surfaces. To obtain a meaningful registration, a common approach is to identify prominent features on the surfaces and establish a low-distortion mapping between them with the feature correspondence encoded as landmark constraints. Prior registration works have primarily focused on using manually labeled landmarks and solving highly nonlinear optimization problems, which are time-consuming and hence hinder practical applications.

View Article and Find Full Text PDF

In this work, we develop a framework for shape analysis using inconsistent surface mapping. Traditional landmark-based geometric morphometr- ics methods suffer from the limited degrees of freedom, while most of the more advanced non-rigid surface mapping methods rely on a strong assumption of the global consistency of two surfaces. From a practical point of view, given two anatomical surfaces with prominent feature landmarks, it is more desirable to have a method that automatically detects the most relevant parts of the two surfaces and finds the optimal landmark-matching alignment between these parts, without assuming any global 1-1 correspondence between the two surfaces.

View Article and Find Full Text PDF

Image retargeting aims to resize an image to one with a prescribed aspect ratio. Simple scaling inevitably introduces unnatural geometric distortions on the important content of the image. In this paper, we propose a simple and yet effective method to resize an image, which preserves the geometry of the important content, using the Beltrami representation.

View Article and Find Full Text PDF

Measurements of vessel-wall-plus-plaque thickness (VWT) from 3D carotid ultrasound have been shown to be sensitive to the effect of pharmaceutical interventions. Since the geometry of carotid arteries is highly subject-specific, quantitative comparison of the distributions of point-wise VWT measured for different patients or for the same patients at different ultrasound scanning sessions requires the development of a mapping strategy to adjust for the geometric variability of different carotid surface models. In this paper, we present an algorithm mapping each 3D carotid surface to a 2D carotid template with an emphasis on preserving the local geometry of the carotid surface by minimizing local angular distortion.

View Article and Find Full Text PDF

The analysis of the vestibular system (VS) is an important research topic in medical image analysis. VS is a sensory structure in the inner ear for the perception of spatial orientation. It is believed several diseases, such as the Adolescent Idiopathic Scoliosis (AIS), are due to the impairment of the VS function.

View Article and Find Full Text PDF

We address the registration problem of genus-one surfaces (such as vertebrae bones) with prescribed landmark constraints. The high-genus topology of the surfaces makes it challenging to obtain a unique and bijective surface mapping that matches landmarks consistently. This work proposes to tackle this registration problem using a special class of quasi-conformal maps called Teichmüller maps (T-Maps).

View Article and Find Full Text PDF

This paper presents a novel algorithm to obtain landmark-based genus-1 surface registration via a special class of quasi-conformal maps called the Teichmüller maps. Registering shapes with important features is an important process in medical imaging. However, it is challenging to obtain a unique and bijective genus-1surface matching that satisfies the prescribed landmark constraints.

View Article and Find Full Text PDF

Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis.

View Article and Find Full Text PDF

Adolescent Idiopathic Scoliosis (AIS) characterized by the 3D spine deformity affects about 4% schoolchildren worldwide. Several studies have demonstrated the malfunctioning of postural balance, proprioception, and equilibrium control in patients with AIS. Since these functions are closely related to structures in and around the brainstem, the morphometry of the brainstem surface is of utmost importance.

View Article and Find Full Text PDF

This paper proposes a novel algorithm to extract feature landmarks on the vestibular system (VS), for the analysis of Adolescent Idiopathic Scoliosis (AIS) disease. AIS is a 3-D spinal deformity commonly occurred in adolescent girls with unclear etiology. One popular hypothesis was suggested to be the structural changes in the VS that induce the disturbed balance perception, and further cause the spinal deformity.

View Article and Find Full Text PDF

Adolescent Idiopathic Scoliosis (AIS) characterized by the 3D spine deformity affects about 4% schoolchildren worldwide. One of the prominent theories of the etiopathogenesis of AIS was proposed to be the poor postural balance control due to the impaired vestibular function. Thus, the morphometry of the vestibular system (VS) is of great importance for studying AIS.

View Article and Find Full Text PDF

We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences.

View Article and Find Full Text PDF

In this work, we find meaningful parameterizations of cortical surfaces utilizing prior anatomical information in the form of anatomical landmarks (sulci curves) on the surfaces. Specifically we generate close to conformal parametrizations that also give a shape-based correspondence between the landmark curves. We propose a variational energy that measures the harmonic energy of the parameterization maps, and the shape dissimilarity between mapped points on the landmark curves.

View Article and Find Full Text PDF

In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced).

View Article and Find Full Text PDF

In this paper, we present algorithms to automatically detect and match landmark curves on cortical surfaces to get an optimized brain conformal parametrization. First, we propose an automatic landmark curve tracing method based on the principal directions of the local Weingarten matrix. Our algorithm obtains a hypothesized landmark curves using the Chan-Vese segmentation method, which solves a Partial Differential Equation (PDE) on a manifold with global conformal parameterization.

View Article and Find Full Text PDF

To compare and integrate brain data, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be conformally mapped to a sphere.

View Article and Find Full Text PDF