Publications by authors named "Lok Hin Lee"

Background And Purpose: Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa).

View Article and Find Full Text PDF

Accurate estimation of gestational age is an essential component of good obstetric care and informs clinical decision-making throughout pregnancy. As the date of the last menstrual period is often unknown or uncertain, ultrasound measurement of fetal size is currently the best method for estimating gestational age. The calculation assumes an average fetal size at each gestational age.

View Article and Find Full Text PDF

We present a method for skill characterisation of sonographer gaze patterns while performing routine second trimester fetal anatomy ultrasound scans. The position and scale of fetal anatomical planes during each scan differ because of fetal position, movements and sonographer skill. A standardised reference is required to compare recorded eye-tracking data for skill characterisation.

View Article and Find Full Text PDF

This study presents a novel approach to automatic detection and segmentation of the Crown Rump Length (CRL) and Nuchal Translucency (NT), two essential measurements in the first trimester US scan. The proposed method automatically localises a standard plane within a video clip as defined by the UK Fetal Abnormality Screening Programme. A Nested Hourglass (NHG) based network performs semantic pixel-wise segmentation to extract NT and CRL structures.

View Article and Find Full Text PDF

In this paper we develop a multi-modal video analysis algorithm to predict where a sonographer should look next. Our approach uses video and expert knowledge, defined by gaze tracking data, which is acquired during routine first-trimester fetal ultrasound scanning. Specifically, we propose a spatio-temporal convolutional LSTMU-Net neural network (cLSTMU-Net) for video saliency prediction with stochastic augmentation.

View Article and Find Full Text PDF

Obstetric ultrasound assessment of fetal anatomy in the first trimester of pregnancy is one of the less explored fields in obstetric sonography because of the paucity of guidelines on anatomical screening and availability of data. This paper, for the first time, examines imaging proficiency and practices of first trimester ultrasound scanning through analysis of full-length ultrasound video scans. Findings from this study provide insights to inform the development of more effective user-machine interfaces, of targeted assistive technologies, as well as improvements in workflow protocols for first trimester scanning.

View Article and Find Full Text PDF

While performing an ultrasound (US) scan, sonographers direct their gaze at regions of interest to verify that the correct plane is acquired and to interpret the acquisition frame. Predicting sonographer gaze on US videos is useful for identification of spatio-temporal patterns that are important for US scanning. This paper investigates utilizing sonographer gaze, in the form of gaze-tracking data, in a multimodal imaging deep learning framework to assist the analysis of the first trimester fetal ultrasound scan.

View Article and Find Full Text PDF

We present an original method for simulating realistic fetal neurosonography images specifically generating third-trimester pregnancy ultrasound images from second-trimester images. Our method was developed using unpaired data, as pairwise data were not available. We also report original insights on the general appearance differences between second- and third-trimester fetal head transventricular (TV) plane images.

View Article and Find Full Text PDF