Adv Wound Care (New Rochelle)
August 2024
Lower extremity traumatic wounds are associated with numerous perioperative challenges. Their etiologies determine the characteristics and extent of the injury. The timing of subsequent surgical intervention and wound healing optimization after lower extremity trauma are integral to successful perioperative lower extremity wound management.
View Article and Find Full Text PDFBackground: The abdominal donor site is the most common flap used for breast reconstruction, with flap necrosis a feared complication. The technique of surgical 'delay' involves the inducing of relative ischemia to promote neovascularisation, amongst other metabolic adaptations, and has been used to augment flap vascularity and reduce this complication. There is significant variability in the manner in which flap surgery and surgical delay may be performed, such as the vessels ligated, the presence and degree of flap elevation, and the decision to harvest muscle with the flap, amongst other factors.
View Article and Find Full Text PDFTumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry.
View Article and Find Full Text PDFTumor treating fields (TTFields) are nonionizing alternating electric fields that have anticancer properties. After the initial approval for use in patients with recurrent glioblastoma in 2011 and newly diagnosed glioblastomas in 2015, they are now being tested in those with advanced lung cancer, ovarian carcinoma, and pancreatic cancer. Unlike ionizing radiation therapy, TTFields have nonlinear propagation characteristics; therefore, it is difficult for clinicians to recognize intuitively the location where these fields have the most impact.
View Article and Find Full Text PDFThe Caregiver Strain Questionnaire assesses the three dimensions of caregiver strain, namely the objective, subjective externalized and subjective internalized strain. It was validated among caregivers of children with Autism Spectrum Disorder (ASD) in the United States and Mainland China with promising psychometric properties.This study aimed to develop and validate the Chinese (traditional script) version of the Caregiver Strain Questionnaire (C-CGSQ) among 198 caregivers of children with ASD in Hong Kong.
View Article and Find Full Text PDFPurpose: Tumor Treating Fields (TTFields) are alternating electric fields at 150 to 200 kHz that exert their anticancer effect by destroying tumor cells when they undergo mitosis. TTFields are currently being tested in patients with non-small cell lung cancer with advanced disease (NCT02973789) and those with brain metastasis (NCT02831959). However, the distribution of these fields within the thoracic compartment remains poorly understood.
View Article and Find Full Text PDFAdv Radiat Oncol
August 2022
Purpose: Cerebral edema is an important component of brain metastasis, and its presence may alter the distribution of tumor-treating fields (TTFields). We therefore performed a computational study to model the extent of this alteration according to various edema conditions associated with the metastasis.
Methods And Materials: Postacquisition magnetic resonance imaging data sets were obtained from 2 patients with solitary brain metastases from non-small cell lung cancer.
Purpose: Since the inception of tumor treating fields (TTFields) therapy as a Food and Drug Administration-approved treatment with known clinical efficacy against recurrent and newly diagnosed glioblastoma, various in silico modeling studies have been performed in an effort to better understand the distribution of applied electric fields throughout the human body for various malignancies or metastases.
Methods And Materials: Postacquisition attenuation-corrected positron emission tomography-computed tomography image data sets from 2 patients with ovarian carcinoma were used to fully segment various intrapelvic and intra-abdominal gross anatomic structures. A 3-dimensional finite element mesh model was generated and then solved for the distribution of applied electric fields, rate of energy deposition, and current density at the clinical target volumes (CTVs) and other intrapelvic and intra-abdominal structures.
Introduction: Tumor Treating Fields (TTFields) are alternating electric fields at 200 kHz that disrupt tumor cells as they undergo mitosis. Patient survival benefit has been demonstrated in randomized clinical trials but much of the data are available only for supratentorial glioblastomas. We investigated a series of alternative array configurations for the posterior fossa to determine the electric field coverage of a cerebellar glioblastoma.
View Article and Find Full Text PDFGlioblastoma is the most common and lethal form of brain cancer, with a median survival of 15 months after diagnosis and a 5 year survival rate of only 5% with current standard of care. Tumors often recur within 9 months following initial surgery, radiation and chemotherapy, at which point treatment options become limited. This highlights the pressing need for the development of better therapeutics to prolong survival and increase the quality of life for these patients.
View Article and Find Full Text PDFWe conducted beach-cast debris transect surveys on Triangle Island, British Columbia, Canada in 2012-2017 to (1) establish a baseline against which to track future changes in stranded debris on this small, uninhabited island; and (2) time the arrival in western North America of debris released by the 2011 Tōhoku tsunami. Most (90%) of the six-year total of 6784 debris items tallied was composed of Styrofoam or plastic. The number of debris items peaked in 2014 (waste Styrofoam, rope) and 2015 (waste plastic, wood), and cumulative totals for all debris types were ca.
View Article and Find Full Text PDFAlternating electric fields of intermediate frequencies, also known as Tumor Treating Fields (TTFields or TTF) is a novel anticancer treatment modality that disrupts tumor cell mitosis at the metaphase-anaphase transition, leading to mitotic catastrophe, aberrant mitotic exit, and/or cell death. It is realized through alteration of the cytokinetic cleavage furrow by interference of proteins possessing large dipole moments, like septin heterotrimer complex and α/β-tubulin, and that results in disordered membrane contraction and failed cytokinesis. Aberrant mitotic exit also elicits immunogenic cell death, which may potentiate an immune response against treated tumors.
View Article and Find Full Text PDFObjectives: This systematic review aims to investigate spinal cord glioblastoma (scGBM) and correlations between patient traits and survival outcome, as well as differences in cohorts administered temozolomide or total resections, through an analysis of published cases reported up to October 2016.
Methods: We obtained patient data by querying PubMed and Google Scholar with predetermined search terms and inclusion criteria that enabled the identification of relevant case reports. Survival was compared using Kaplan-Meier curves and log-rank analyses.
Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers.
View Article and Find Full Text PDFTumor Treating Fields (TTFields) therapy is an approved treatment that has known clinical efficacy against recurrent and newly diagnosed glioblastoma. However, the distribution of the electric fields and the corresponding pattern of energy deposition in the brain are poorly understood. To evaluate the physical parameters that may influence TTFields, postacquisition MP-RAGE, T1 and T2 MRI sequences from a responder with a right parietal glioblastoma were anatomically segmented and then solved using finite-element method to determine the distribution of the electric fields and rate of energy deposition at the gross tumor volume (GTV) and other intracranial structures.
View Article and Find Full Text PDFExisting literature on the profile of executive dysfunction in autism spectrum disorder showed inconsistent results. Age, comorbid attention-deficit/hyperactivity disorder (ADHD) and cognitive abilities appeared to play a role in confounding the picture. Previous meta-analyses have focused on a few components of executive functions.
View Article and Find Full Text PDFBackground: Patients with intravascular lymphoma (IVL) frequently have neurological signs and symptoms. Prompt diagnosis and treatment is therefore crucial for their survival. However, the spectrum of neurological presentations and their respective frequencies have not been adequately characterized.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2016
As with many cancer treatments, tumor treating fields (TTFields) target rapidly dividing tumor cells. During mitosis, TTFields-exposed cells exhibit uncontrolled membrane blebbing at the onset of anaphase, resulting in aberrant mitotic exit. Based on these criteria, at least two protein complexes have been proposed as TTFields' molecular targets, including α/β-tubulin and the septin 2, 6, 7 heterotrimer.
View Article and Find Full Text PDFExpert Rev Med Devices
September 2016
Tumor treating fields (TTFields) are alternating electric fields frequency tuned to 200 kHz for the treatment of recurrent glioblastoma. We report a patient treated with TTFields and determined the distribution of TTFields intracranially by computerized simulation using co-registered postgadolinium T1-weighted, T2, and MP RAGE images together with pre-specified conductivity and relative permittivity values for various cerebral structures. The distribution of the electric fields within the brain is inhomogeneous.
View Article and Find Full Text PDFCurr Treat Options Oncol
August 2015
Glioblastoma is a deadly disease and even aggressive neurosurgical resection followed by radiation and chemotherapy only extends patient survival to a median of 1.5 years. The challenge in treating this type of tumor stems from the rapid proliferation of the malignant glioma cells, the diffuse infiltrative nature of the disease, multiple activated signal transduction pathways within the tumor, development of resistant clones during treatment, the blood brain barrier that limits the delivery of drugs into the central nervous system, and the sensitivity of the brain to treatment effect.
View Article and Find Full Text PDFBackground: Patients with recurrent glioblastoma have a poor outcome. Data from the phase III registration trial comparing tumour-treating alternating electric fields (TTFields) vs chemotherapy provided a unique opportunity to study dexamethasone effects on patient outcome unencumbered by the confounding immune and myeloablative side effects of chemotherapy.
Methods: Using an unsupervised binary partitioning algorithm, we segregated both cohorts of the trial based on the dexamethasone dose that yielded the greatest statistical difference in overall survival (OS).