Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies.
View Article and Find Full Text PDFPurpose: The Covid-19 epidemic has imposed profound changes on the practice of orthodontics. It was in this anxiety-inducing context that drastic measures were imposed on orthodontists. The main aim of this online survey is to highlight the measures that are still in place in French orthodontic practices three years after the emergence of the pandemic.
View Article and Find Full Text PDFThis article describes a dataset providing sensory and nutritional information for 30 commercial cooked hams (without rind, not flavored) representative of the French commercial segment. The sensory data were collected in two phases. During the first phase (fall 2019, field experiment), 483 consumers, regular consumers of cooked hams, were recruited in seven cities and vicinities of France.
View Article and Find Full Text PDFBackground: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for.
View Article and Find Full Text PDFThe rise in interest in two-dimensional (2D) nanomaterials has been notable in recent years. In particular, hexagonal boron nitride (h-BN), recognized as an optimal substrate for enhancing graphene properties, holds promise for electronic applications. However, the widely employed spontaneous Raman microscopy, a gold standard for graphene study, faces strong limitations in h-BN due to its large bandgap and low cross section.
View Article and Find Full Text PDFUrbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness.
View Article and Find Full Text PDFThe eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials.
View Article and Find Full Text PDFDespite its simple crystal structure, layered boron nitride features a surprisingly complex variety of phonon-assisted luminescence peaks. We present a combined experimental and theoretical study on ultraviolet-light emission in hexagonal and rhombohedral bulk boron nitride crystals. Emission spectra of high-quality samples are measured via cathodoluminescence spectroscopy, displaying characteristic differences between the two polytypes.
View Article and Find Full Text PDFBackground: Cardiac complications due to non-traumatic subarachnoid hemorrhage (SAH) are usually described using classical echocardiographic evaluation. Strain imaging appears to have better sensitivity than standard echocardiographic markers for the diagnosis of left ventricular dysfunction. The aim of this study was to determine the prevalence of cardiac dysfunction defined as a Global Longitudinal Strain (GLS) ≥ - 20% in patients with good-grade SAH (WFNS 1 or 2).
View Article and Find Full Text PDFThis paper describes a simple, two-steps chemical pathway to obtain bimetallic carbide nanoparticles (NPs) of general formula MxM″yC, also called η-carbides. This process allows for a control of the chemical composition of metals present in the carbides (M = Co and M″ = Mo or W). The first step involves the synthesis of a precursor consisting of a network of octacyanometalates.
View Article and Find Full Text PDFThe surfactant used during a colloidal synthesis is known to control the size and shape of metallic nanoparticles. However, its influence on the nanoparticle (NP) structure is still not well understood. In this study, we show that the surfactant can significantly modify the lattice parameter of a crystalline particle.
View Article and Find Full Text PDFBackground: Understanding the relationships between wildlife biodiversity and zoonotic infectious diseases in a changing climate is a challenging issue that scientists must address to support further policy actions. We aim at tackling this challenge by focusing on small mammal-borne diseases in temperate forests and large urban green spaces. Small mammals are important reservoirs of zoonotic agents, with a high transmission potential for humans and domestic animals.
View Article and Find Full Text PDFPolarized fluorescence emission of nanoscale emitters has been extensively studied for applications such as bioimaging, displays, and optical communication. Extending the polarization properties in large assemblies of compact emitters is, however, challenging because of self-aggregation processes, which can induce depolarization effects, quenching, and cancellations of molecular dipoles. Here we use α-sexithiophene (6T) molecules confined inside boron nitride nanotubes (6T@BNNTs) to induce fluorescence anisotropy in a transparent host.
View Article and Find Full Text PDFBoth local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear.
View Article and Find Full Text PDFEye drops represent 90% of all currently used ophthalmic treatments. Only 0.02% of therapeutic molecules contained in eye drops reach the eye anterior chamber despite their high concentration.
View Article and Find Full Text PDF2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters.
View Article and Find Full Text PDFAt the nanoscale, the synthesis of a random alloy ( without phase segregation, whatever the composition) by chemical synthesis remains a difficult task, even for simple binary type systems. In this context, a unique approach based on the colloidal route is proposed enabling the synthesis of face-centred cubic and monodisperse bimetallic, trimetallic, tetrametallic and pentametallic nanoparticles with diameters around 5 nm as solid solutions. The Fe-Co-Ni-Pt-Ru alloy (and its subsets) is considered a challenging task as each element has fairly different physico-chemical properties.
View Article and Find Full Text PDFStrategies for plant resistance gene deployment aim to preserve their durability to highly adaptable fungal pathogens. While the pyramiding of resistance genes is often proposed as an effective way to increase their durability, molecular mechanisms by which the pathogen can overcome the resistance also are important aspects to take into account. Here, we report a counterexample where pyramiding of two resistance genes of , and , matching the avirulence genes and , respectively, favored the selection of double-virulent isolates.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are secreted nanoparticles that are involved in intercellular communication and that modulate a wide range of biological processes in normal and disease conditions. However, EVs are highly heterogeneous in terms of origin in the cell, size, and density. As a result, complex protocols are required to identify and characterize specific EV subpopulations, limiting biomedical applications, notably in diagnostics.
View Article and Find Full Text PDFThe association between chemotherapeutic drugs and metal oxide nanoparticles has sparked a rapidly growing interest in cancer nanomedicine. The elaboration of new engineered docetaxel (DTX)-nanocarriers based on titanate nanotubes (TiONts) was reported. The idea was to maintain the drug inside cancer cells and avoid multidrug resistance mechanisms, which often limit drug efficacy by decreasing their intracellular concentrations in tumor cells.
View Article and Find Full Text PDFBecause the broadly consumed pain killer diclofenac (DCF) is a recognized pollutant, monitoring of its concentration is routinely performed in surface waters. As a valuable alternative to chromatographic and immunochemical assays, we developed a piezoelectric immunosensor to quantify DCF, first in buffer (PBS) and then in river water samples. A sensing layer comprising DCF was built up on the surface of silica-coated quartz sensors using a robust coupling chemistry.
View Article and Find Full Text PDFThe process of local adaptation involves differential changes in fitness over time across different environments. Although experimental evolution studies have extensively tested for patterns of local adaptation at a single time point, there is relatively little research that examines fitness more than once during the time course of adaptation. We allowed replicate populations of the fruit pest Drosophila suzukii to evolve in one of eight different fruit media.
View Article and Find Full Text PDFPolyethylene glycol (PEG) is considered the gold standard to prepare long circulating nanoparticles. The hydrophilic layer that sterically protects PEGylated nanomedicines also impedes their separation from biological media. In this study, we describe an immunoprecipitation method using AntiPEG antibodies cross-linked to magnetic beads to extract three types of radiolabeled PEGylated systems: polymeric nanoparticles, liposomes, and therapeutic proteins.
View Article and Find Full Text PDF