Atmospheric carbon dioxide enrichment (eCO) can enhance plant carbon uptake and growth, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO concentration. Although evidence gathered from young aggrading forests has generally indicated a strong CO fertilization effect on biomass growth, it is unclear whether mature forests respond to eCO in a similar way. In mature trees and forest stands, photosynthetic uptake has been found to increase under eCO without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO unclear.
View Article and Find Full Text PDFAgronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential.
View Article and Find Full Text PDFChemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination.
View Article and Find Full Text PDFChlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to sp.
View Article and Find Full Text PDFMethane is an important greenhouse gas and microbes in the environment play major roles in both global methane emissions and terrestrial sinks. However, a full mechanistic understanding of the response of the methane cycle to global change is lacking. Recent studies suggest that a number of biological and environmental processes can influence the net flux of methane from soils to the atmosphere but the magnitude and direction of their impact are still debated.
View Article and Find Full Text PDFMicrobes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios.
View Article and Find Full Text PDFMethanotrophs use methane (CH(4)) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH(4) oxidation in soil with afforestation or reforestation is poorly understood.
View Article and Find Full Text PDFA multiplex terminal restriction fragment length polymorphism (M-TRFLP) fingerprinting method was developed and validated for simultaneous analysis of the diversity and community structure of two or more microbial taxa (up to four taxa). The reproducibility and robustness of the method were examined using soil samples collected from different habitats. DNA was PCR amplified separately from soil samples using individual taxon-specific primers for bacteria, archaea, and fungi.
View Article and Find Full Text PDF