Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T < 275 °C), low-cost, and scalable techniques.
View Article and Find Full Text PDFLight localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.
View Article and Find Full Text PDFThe role of pseudo-disordered photonic crystals on the absorption efficiency of simplified thin film crystalline silicon solar cells is presented and discussed. The expected short circuit current can thus be further increased compared to a fully optimized square lattice of holes, thanks to carefully controlled positions of the nanoholes in the considered realistic simplified solar cell stack. In addition, the pseudo-disordered structures are less sensitive to the angle of incidence, especially in the long wavelength range.
View Article and Find Full Text PDFPseudo-disordered structures enable additional design freedom for photon management. However, the optimization and interpretation is challenging when the large number of degrees of freedom encounters computationally intensive electromagnetic simulation method. Here we propose a novel one-dimensional multi-periodic pattern generation method to help us squeeze the disorder design space before performing rigorous calculation, by making use of the periodic attribute of the pattern.
View Article and Find Full Text PDFWe have developed a scanning thermal probe microscope that operates in liquid environments. The thermal sensor is a fluorescent particle glued at the end of a sharp tungsten tip. Since light emission is a strongly thermally sensitive effect, the measurement of the particle fluorescence variations allows the determination of the temperature.
View Article and Find Full Text PDFBy using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire.
View Article and Find Full Text PDFWe report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens.
View Article and Find Full Text PDFWe demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Deltalambda/lambda~10(-3)) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.
View Article and Find Full Text PDF