Publications by authors named "Loic Faye"

Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants.

View Article and Find Full Text PDF

Background: Immunoglobulin (Ig)E cross-reactivity has been shown between Dermatophagoides farinae (Df; house dust mite) and the nematode Toxocara canis (Tc), yet its allergen basis is unknown.

Objectives: To identify the Df allergens IgE-cross-reactive with those of Tc.

Animals: Archived sera from 73 dogs with suspected allergy sensitised to Df.

View Article and Find Full Text PDF

Canine atopic dermatitis (CAD) is an allergic, inflammatory, and pruritic skin disease associated with the production of IgE antibodies against environmental allergens and mainly house dust mite allergens. This complex dermatological pathology involves Interleukin 31 (IL-31) as a central itch mediator. One of the most effective CAD treatments is a caninized monoclonal antibody (mAb) called Lokivetmab.

View Article and Find Full Text PDF

A major difficulty to reach commercial- scale production for plant-made antibodies is the complexity and cost of their purification from plant extracts. Here, using Protein A magnetic beads, two monoclonal antibodies are purified in a one-step procedure directly from non-clarified crude plant extracts. This technique provides significant savings in terms of resources, operation time, and equipment.

View Article and Find Full Text PDF

Allergen immunotherapy (AIT) is the only disease-modifying treatment with evidence for sustained efficacy. However, it is poorly developed compared to symptomatic drugs. The main reasons come from treatment duration implying monthly injections during 3 to 5 years or daily sublingual use, and the risk of allergic side-effects.

View Article and Find Full Text PDF

Grass pollen allergic patients are concomitantly exposed and sensitized to pollens from multiple Pooideae (i.e. common grass) species.

View Article and Find Full Text PDF

While N-glycan synthesis in the endoplasmic reticulum (ER) is relatively well conserved in eukaryotes, N-glycan processing and O-glycan biosynthesis in the Golgi apparatus are kingdom specific and result in different oligosaccharide structures attached to glycoproteins in plants and mammals. With the prospect of using plants as alternative hosts to mammalian cell lines for the production of therapeutic glycoproteins, significant progress has been made towards the humanization of protein N-glycosylation in plant cells. To date, successful efforts in this direction have mainly focused on the targeted expression of therapeutic proteins, the knockout of plant-specific N-glycan-processing genes, and/or the introduction of the enzymatic machinery catalyzing the synthesis, transport and addition of human sugars.

View Article and Find Full Text PDF

Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked glycosylation (alg) mutants.

View Article and Find Full Text PDF

Background: In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo.

View Article and Find Full Text PDF

Plant-based transient expression is potentially the most rapid and cost-efficient system for the production of recombinant pharmaceutical proteins, but safety concerns associated with plant-specific N-glycosylation have hampered its adoption as a commercial production system. In this article, we describe an approach based on the simultaneous transient co-expression of an antibody, a suppressor of silencing and a chimaeric human beta1,4-galactosyltransferase targeted for optimal activity to the early secretory pathway in agroinfiltrated Nicotiana benthamiana leaves. This strategy allows fast and high-yield production of antibodies with human-like N-glycans and, more generally, provides solutions to many critical problems posed by the large-scale production of therapeutic and vaccinal proteins, specifically yield, volume and quality.

View Article and Find Full Text PDF

Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures.

View Article and Find Full Text PDF

The post-translational processing of human alpha(1)-antichymotrypsin (AACT) in Bright Yellow-2 (BY-2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse-chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non-glycosylated form, in contrast with secreted variants undergoing multiple post-translational modifications during their transit through the secretory pathway.

View Article and Find Full Text PDF

Recently, we have observed a nuclear localization for human alpha(1)-antichymotrypsin (AACT) expressed in the cytosol of transgenic Bright Yellow-2 (BY-2) tobacco cultured cells (see accompanying paper: Benchabane, M., Saint-Jore-Dupas, C., Bardor, M.

View Article and Find Full Text PDF

From 60,000 B.C. to the 19th century, plants were the main source for human drugs.

View Article and Find Full Text PDF

Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of alpha and beta subunits. Here we present the first characterization of a plant glucosidase II alpha subunit at the molecular level. Expression of the Arabidopsis alpha subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe alpha- or alphabeta-deficient mutants, but with a lower efficiency in the last case.

View Article and Find Full Text PDF

Numerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product.

View Article and Find Full Text PDF

Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems.

View Article and Find Full Text PDF

Plant-specific glycosylation has long been a major limitation to the extensive use of plant-made pharmaceuticals in human therapy. Our goal here is to highlight the progress recently made towards humanization of N-glycosylation in plants and to illustrate that plant-typical N- and O-glycosylation progressively emerge as additional advantages for using this promising expression system.

View Article and Find Full Text PDF

The replacement of crude allergen extracts by selected allergens currently represents a major goal for the improvement of allergy diagnosis and immunotherapy. Indeed, the development of molecularly defined vaccines would facilitate both standardization and enhance batch-to-batch reproducibility as well as treatment specificity. In this study, we have investigated the potential of tobacco plant cells to produce biologically active forms of the two major allergens from the house dust mite.

View Article and Find Full Text PDF

Plants are a low-cost and contamination-free factory for the production of recombinant pharmaceutical proteins. However, plant-made pharmaceuticals differ from their mammalian homologues by the structure of their N-linked glycans. For instance, most mammalian glycoproteins harbour terminal sialic acids that control their half-life in the bloodstream.

View Article and Find Full Text PDF

Antibodies have long been recognized for their diagnostic and therapeutic potential. The rapidly increasing number of monoclonal antibodies approved for immunotherapy has paved the way to an even greater demand for these molecules. In order to satisfy this growing demand and to increase the production capacity, alternative systems based on antibody production in transgenic organisms are being actively explored.

View Article and Find Full Text PDF

The processing of N-linked oligosaccharides in the secretory pathway requires the sequential action of a number of glycosidases and glycosyltransferases. We studied the spatial distribution of several type II membrane-bound enzymes from Glycine max, Arabidopsis thaliana, and Nicotiana tabacum. Glucosidase I (GCSI) localized to the endoplasmic reticulum (ER), alpha-1,2 mannosidase I (ManI) and N-acetylglucosaminyltransferase I (GNTI) both targeted to the ER and Golgi, and beta-1,2 xylosyltransferase localized exclusively to Golgi stacks, corresponding to the order of expected function.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlqh68ohc0vv90tiac5nerqmv7jbmnuuq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once