Proc Natl Acad Sci U S A
May 2021
Refractory materials hold great promise to develop functional multilayer coating for extreme environments and temperature applications but require high temperature and complex synthesis to overcome their strong atomic bonding and form a multilayer structure. Here, a spontaneous reaction producing sophisticated multilayer refractory carbide coatings on carbon fiber (CF) is reported. This approach utilizes a relatively low-temperature (950 °C) molten-salt process for forming refractory carbides.
View Article and Find Full Text PDFIn this work, we demonstrate that ultraviolet (UV) laser photolysis of hydrocarbon species alters the flame chemistry such that it promotes the diamond growth rate and film quality. Optical emission spectroscopy and laser-induced fluorescence demonstrate that direct UV laser irradiation of a diamond-forming combustion flame produces a large amount of reactive species that play critical roles in diamond growth, thereby leading to enhanced diamond growth. The diamond growth rate is more than doubled, and diamond quality is improved by 4.
View Article and Find Full Text PDF