The ventricular-subventricular zone (V-SVZ) is the principal neurogenic niche in the adult mammalian forebrain. Neural stem/progenitor cell (NSPC) activity within the V-SVZ is controlled by numerous of extrinsic factors, whose downstream effects on NSPC proliferation, survival and differentiation are transduced via a limited number of intracellular signaling pathways. Here, we investigated the relationship between age-related changes in NSPC output and activity of signaling pathways downstream of the epidermal growth factor receptor (EGFR), a major regulator of NSPC activity.
View Article and Find Full Text PDFThe ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC-mediated adult neurogenesis. Ventricle-contacting GFAP cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age.
View Article and Find Full Text PDFA single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain.
View Article and Find Full Text PDFIn the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs) throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important.
View Article and Find Full Text PDF