Publications by authors named "Loic Auvray"

Symmetrical cyclodextrin-based 14-arm star polymers with poly(ethylene glycol) PEG branches were synthesized and characterized. Interactions of the star polymers with lipid bilayers were studied by the "black lipid membrane" technique in order to demonstrate the formation of monomolecular artificial channels. The conditions for the insertion are mainly based on dimensions and amphiphilic properties of the star polymers, in particular the molar mass of the water-soluble polymer branches.

View Article and Find Full Text PDF

Nanopores constitute devices for the sensing of nano-objects such as ions, polymer chains, proteins or nanoparticles. We describe what information we can extract from the current trace. We consider the entrance of polydisperse chains into the nanopore, which leads to a conductance drop.

View Article and Find Full Text PDF

We study the flow injection of semiflexible polymers in a nanopore with a diameter smaller than the persistence length of the macromolecules. The suction model from de Gennes and Brochard is modified to take into account the effect of the rigidity of the polymer in the Odijk regime. We show that in this case of extreme confinement the flow threshold vanishes slowly and that in the limit of infinitely small nanopore the free energy barrier eventually disappears.

View Article and Find Full Text PDF

We describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged.

View Article and Find Full Text PDF

Nuclear Pore Complex (NPC) is of paramount importance for cellular processes since it is the unique gateway for molecular exchange through the nucleus. Unraveling the modifications of the NPC structure in response to physiological cues, also called nuclear pore plasticity, is key to the understanding of the selectivity of this molecular machinery. As a step towards this goal, we use the optical super-resolution microscopy method called direct Stochastic Optical Reconstruction Microscopy (dSTORM), to analyze oocyte development impact on the internal structure and large-scale organization of the NPC.

View Article and Find Full Text PDF

We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge.

View Article and Find Full Text PDF

Protein nanopores are mainly used to study transport, unfolding, intrinsically disordered proteins, protein-pore interactions, and protein-ligand complexes. This single-molecule sensor for biomedical and biotechnological applications is promising but until now direct proof of protein translocation through a narrow channel is lacking. Here, we report the translocation of a chimera molecule through the aerolysin nanopore in the presence of a denaturing agent, guanidium chloride (1.

View Article and Find Full Text PDF

We directly measure the flow-driven injection of DNA through nanopores at the level of single molecule and single pore using a modified zero-mode waveguide method. We observe a flow threshold independent of the pore radius, the DNA concentration, and length. We demonstrate that the flow injection of DNA in nanopores is controlled by an energy barrier as proposed in the de Gennes-Brochard suction model.

View Article and Find Full Text PDF

In this mini-review we introduce and discuss a new method, at single molecule level, to study the protein folding and protein stability, with a nanopore coupled to an electric detection. Proteins unfolded or partially folded passing through one channel submitted to an electric field, in the presence of salt solution, induce different detectable blockades of ionic current. Their duration depends on protein conformation.

View Article and Find Full Text PDF

The enzymatic degradation of long polysaccharide chains is monitored by nanopore detection. It follows a Michaelis-Menten mechanism. We measure the corresponding kinetic constants at the single molecule level.

View Article and Find Full Text PDF

Being able to differentiate local fluctuations from global folding-unfolding dynamics of a protein is of major interest for improving our understanding of structure-function determinants. The maltose binding protein (MBP), a protein that belongs to the maltose transport system, has a structure composed of two globular domains separated by a rigid-body "hinge bending". Here we determined, by using hydrogen exchange (HX) nuclear magnetic resonance experiments, the apparent stabilization free energies of 101 residues of MBP bound to β-cyclodextrin (MBP-βCD) under native conditions.

View Article and Find Full Text PDF

Glycosaminoglycans are biologically active anionic carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. The potential of newly introduced biosensors using protein nanopores that have been mainly described for nucleic acids and protein analysis to date, has been here applied to this polysaccharide-based third class of bioactive biopolymer. This nanopore approach has been harnessed in this study to analyze the hyaluronic acid glycosamiglycan and its depolymerization-derived oligosaccharides.

View Article and Find Full Text PDF

We report experimentally the transport of an unfolded protein through a narrow solid-state nanopore of 3 nm diameter as a function of applied voltage. The random coil polypeptide chain is larger than the nanopore. The event frequency dependency of current blockades from 200 to 750 mV follows a van't Hoff-Arrhenius law due to the confinement of the unfolded chain.

View Article and Find Full Text PDF

We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.

View Article and Find Full Text PDF

The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood.

View Article and Find Full Text PDF

We investigate the entrance of single poly(ethylene glycol) chains into an α-hemolysin channel. We detect the frequency and duration of the current blockades induced by large neutral polymers, where chain radius is larger than pore diameter. In the semidilute regime, these chains pass only if the monomer concentration is larger than a well-defined threshold.

View Article and Find Full Text PDF

Understanding protein folding remains a challenge. A difficulty is to investigate experimentally all the conformations in the energy landscape. Only single molecule methods, fluorescence and force spectroscopy, allow observing individual molecules along their folding pathway.

View Article and Find Full Text PDF

The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation.

View Article and Find Full Text PDF

The detection of oligosaccharides at the single-molecule level was investigated using a protein nanopore device. Neutral oligosaccharides of various molecular weights were translocated through a single α-hemolysin nanopore and their nano-transit recorded at the single-molecule level. The translocation of maltose and dextran oligosaccharides featured by 1→4 and 1→6 glycosidic bonds respectively was studied in an attempt to discriminate oligosaccharides according to their polymerization degree and glycosidic linkages.

View Article and Find Full Text PDF

We report experimentally the dynamic properties of the entry and transport of unfolded and native proteins through a solid-state nanopore as a function of applied voltage, and we discuss the experimental data obtained as compared to theory. We show an exponential increase in the event frequency of current blockades and an exponential decrease in transport times as a function of the electric driving force. The normalized current blockage ratio remains constant or decreases for folded or unfolded proteins, respectively, as a function of the transmembrane potential.

View Article and Find Full Text PDF
Article Synopsis
  • Protein export involves the transport of unfolded proteins through a channel, with this study examining the process using an aerolysin nanopore at the single-molecule level.
  • The researchers found that the frequency of current blockades varies based on applied voltage and protein concentration, with faster transport times at higher voltages.
  • The findings align with theories on polyelectrolyte transport and suggest that aerolysin nanopores could be useful for studying protein folding, similar to previous research done with α-hemolysin.
View Article and Find Full Text PDF

This paper presents a SANS study of hydrophobically end-modified poly(2-methyl-2-oxazoline) (POXZ-C(n)) micelles in aqueous solutions. Strong long-range repulsive interactions between the micelles are evidenced by correlation peaks present at concentrations as low as 0.5 wt %.

View Article and Find Full Text PDF

We study the entry and transport of a polyelectrolyte, dextran sulfate (DS), through an asymmetric alpha-hemolysin protein channel inserted into a planar lipid bilayer. We compare the dynamics of the DS chains as they enter the channel at the opposite stem or vestibule sides. Experiments are performed at the single-molecule level by using an electrical method.

View Article and Find Full Text PDF

The aim of this work is to synthesize new PEO-based polyrotaxanes from modified cyclodextrins. Two strategies are discussed and compared. In the first, a pseudopolyrotaxane was formed between alpha,omega- PEO dimethacrylate and alpha-cyclodextrin.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhb66a97vf93qsaqjgp0t5kft5uhg1dqj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once