Organic materials can tune the optical properties in layered (2D) hybrid perovskites, although their impact on photophysics is often overlooked. Here, we use transient absorption spectroscopy to probe the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) 2D perovskite phases. We show the formation of charge transfer excitons in DJ phases, resulting in a photoinduced Stark effect which is shown to be dependent on the spacer size.
View Article and Find Full Text PDFLayered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analogue (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases.
View Article and Find Full Text PDFLayered hybrid perovskites based on Dion-Jacobson phases are of interest to various optoelectronic applications. However, the understanding of their structure-property relationships remains limited. Here, we present a systematic study of Dion-Jacobson perovskites based on (S)PbX ( = 1) compositions incorporating phenylene-derived aromatic spacers (S) with different anchoring alkylammonium groups and halides (X = I, Br).
View Article and Find Full Text PDFThe use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA) and 2-(perfluorophenyl)ethylammonium (FEA) moieties, revealing nanoscale phase segregation.
View Article and Find Full Text PDF