Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFPathogenic variants in the gene represent the most common cause of autosomal dominant Parkinson's disease (PD) worldwide. We identified the p.L1795F variant in 14 White/European ancestry PD patients, including two families with multiple affected carriers and seven additional affected individuals with familial PD using genotyping and sequencing data from more than 50,000 individuals through GP2, AMP-PD, PDGENEration, and CENTOGENE.
View Article and Find Full Text PDFBackground: Commercial genome-wide genotyping arrays have historically neglected coverage of genetic variation across populations.
Objective: We aimed to create a multi-ancestry genome-wide array that would include a wide range of neuro-specific genetic content to facilitate genetic research in neurological disorders across multiple ancestral groups, fostering diversity and inclusivity in research studies.
Methods: We developed the Illumina NeuroBooster Array (NBA), a custom high-throughput and cost-effective platform on a backbone of 1,914,934 variants from the Infinium Global Diversity Array and added custom content comprising 95,273 variants associated with more than 70 neurological conditions or traits, and we further tested its performance on more than 2000 patient samples.
Introduction: Equine asthma (EA) is a common disease of adult horses with chronic respiratory pathology and common neutrophilic airway inflammation. It presents with hyperreactivity to hay dust components such as molds, and underlying dysregulated T cell responses have been suggested. Thus far, T cells have been analysed in EA with conflicting results and the antigen reactivity of T cells has not been demonstrated.
View Article and Find Full Text PDFBackground: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale.
Objective: To identify the multi-ancestry spectrum of monogenic PD.
Methods: The first systematic approach to embrace monogenic PD worldwide, The Michael J.
Variants in seven genes (LRRK2, GBA1, PRKN, SNCA, PINK1, PARK7 and VPS35) have been formally adjudicated as causal contributors to Parkinson's disease; however, individuals with Parkinson's disease are often unaware of their genetic status since clinical testing is infrequently offered. As a result, genetic information is not incorporated into clinical care, and variant-targeted precision medicine trials struggle to enrol people with Parkinson's disease. Understanding the yield of genetic testing using an established gene panel in a large, geographically diverse North American population would help patients, clinicians, clinical researchers, laboratories and insurers better understand the importance of genetics in approaching Parkinson's disease.
View Article and Find Full Text PDFIntroduction: Equine asthma (EA) is a common lower airway disease in horses, but whether its pathogenesis is allergic is ambiguous. Extrinsic stimuli like hay dust induce acute exacerbation of clinical signs and sustained local neutrophilic inflammation in susceptible horses. is an EA stimulus, but it is unclear if it merely acts as an IgE-provoking allergen.
View Article and Find Full Text PDFIn the past decade, next-generation sequencing (NGS) has revolutionised genetic diagnostics for rare neurological disorders (RND). However, the lack of standardised technical, interpretative, and reporting standards poses a challenge for ensuring consistent and high-quality diagnostics globally. To address this, the European Reference Network for Rare Neurological Diseases (ERN-RND) collaborated with the European Molecular Genetics Quality Network (EMQN) to establish an external quality assessment scheme for NGS-based diagnostics in RNDs.
View Article and Find Full Text PDFStructural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed.
View Article and Find Full Text PDFBackground: Prior studies have indicated that female individuals outnumber male individuals for certain types of dystonia. Few studies have addressed factors impacting these sex differences or their potential biological mechanisms.
Objectives: To evaluate factors underlying sex differences in the dystonias and explore potential mechanisms for these differences.
Pathogenic variants in PRKN cause early-onset Parkinson's disease (PD), while the role of alpha-synuclein in PRKN-PD remains uncertain. One study performed a blood-based alpha-synuclein seed amplification assay (SAA) in PRKN-PD, not detecting seed amplification in 17 PRKN-PD patients. By applying a methodologically different SAA focusing on neuron-derived extracellular vesicles, we demonstrated alpha-synuclein seed amplification in 8 of 13 PRKN-PD patients, challenging the view of PRKN-PD as a non-synucleinopathy.
View Article and Find Full Text PDFUntil recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes.
View Article and Find Full Text PDFDystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses.
View Article and Find Full Text PDFBackground: The newly discovered intronic repeat expansions in the genes encoding replication factor C subunit 1 (RFC1) and fibroblast growth factor 14 (FGF14) frequently cause late-onset cerebellar ataxia.
Objectives: To investigate the presence of RFC1 and FGF14 pathogenic repeat expansions in Serbian patients with adult-onset cerebellar ataxia.
Methods: The study included 167 unrelated patients with sporadic or familial cerebellar ataxia.
Background: Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10).
Methods: Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients.
Results: Most patients (>80%) had loss-of-function (LOF) variants.
Background: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD).
Objectives: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes.