Publications by authors named "Lohmann G"

Human population dynamics and their drivers are not well understood, especially over the long term and on large scales. Here, we estimate demographic growth trajectories from 9 to 3 ka BP across the entire globe by employing summed probability distributions of radiocarbon dates. Our reconstruction reveals multicentennial growth cycles on all six inhabited continents, which exhibited matching dominant frequencies and phase relations.

View Article and Find Full Text PDF

The key locations of freshwater input driving Atlantic Meridional Overturning Circulation (AMOC) slowdown and their climate responses remain inconclusive. Using a state-of-the-art global climate model, we conduct freshwater hosing experiments to reexamine AMOC sensitivity and its climate impacts. The Irminger basin emerges as the most effective region for additional freshwater fluxes, causing the greatest AMOC weakening.

View Article and Find Full Text PDF

The Atlantic circulation is a key component of the global ocean conveyor that transports heat and nutrients worldwide. Its likely weakening due to global warming has implications for climate and ecology. However, the expected changes remain largely uncertain as low-resolution climate models currently in use do not resolve small scales.

View Article and Find Full Text PDF
Article Synopsis
  • * This study links the transition to the unequal development of ice sheets in the Northern and Southern Hemispheres, showing significant Antarctic Ice Sheet growth before major Northern Hemisphere ice expansion.
  • * The findings suggest that the Southern Ocean's sea ice and AIS spread could lead to cooling in the Northern Hemisphere, potentially triggering the Mid-Pleistocene Transition and providing insights into current global warming effects on ice sheets.
View Article and Find Full Text PDF

One of Earth's most fundamental climate shifts, the greenhouse-icehouse transition 34 million years ago, initiated Antarctic ice sheet buildup, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7 to 33.

View Article and Find Full Text PDF

Using the climate model CLIMBER-X, we present an efficient method for assimilating the temporal evolution of surface temperatures for the last deglaciation covering the period 22000 to 6500 years before the present. The data assimilation methodology combines the data and the underlying dynamical principles governing the climate system to provide a state estimate of the system, which is better than that which could be obtained using just the data or the model alone. In applying an ensemble Kalman filter approach, we make use of the advances in the parallel data assimilation framework (PDAF), which provides parallel data assimilation functionality with a relatively small increase in computation time.

View Article and Find Full Text PDF

Unlabelled: Recent variability in West African monsoon rainfall (WAMR) has been shown to be influenced by multiple ocean-atmosphere modes, including the El Niño Southern Oscillation, Atlantic Multidecadal Oscillation and the Interdecadal Pacific Oscillation. How these modes will change in response to long term forcing is less well understood. Here we use four transient simulations driven by changes in orbital forcing and greenhouse gas concentrations over the past 6000 years to examine the relationship between West African monsoon rainfall multiscale variability and changes in the modes associated with this variability.

View Article and Find Full Text PDF

Climate indices are often used as a climate monitoring tool, allowing us to understand how the frequency, intensity, and duration of extreme weather events are changing over time. Here, based on complex statistical analysis we identify highly correlated significant pairs of compound events at the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts of hotspots and trends, risk exposure to land cover and population, and identification of maximum increasing trends.

View Article and Find Full Text PDF

Due to its involvement in numerous feedbacks, sea ice plays a crucial role not only for polar climate but also at global scale. We analyse state-of-the-art observed, reconstructed, and modelled sea-ice concentration (SIC) together with sea surface temperature (SST) to disentangle the influence of different forcing factors on the variability of these coupled fields. Canonical Correlation Analysis provides distinct pairs of coupled Arctic SIC-Atlantic SST variability which are linked to prominent oceanic and atmospheric modes of variability over the period 1854-2017.

View Article and Find Full Text PDF

Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.

View Article and Find Full Text PDF

The functional topography of the human primary somatosensory cortex hand area is a widely studied model system to understand sensory organization and plasticity. It is so far unclear whether the underlying 3D structural architecture also shows a topographic organization. We used 7 Tesla (7T) magnetic resonance imaging (MRI) data to quantify layer-specific myelin, iron, and mineralization in relation to population receptive field maps of individual finger representations in Brodman area 3b (BA 3b) of human S1 in female and male younger adults.

View Article and Find Full Text PDF

We present a new approach to modeling the future development of extreme temperatures globally and on the time-scale of several centuries by using non-stationary generalized extreme value distributions in combination with logistic functions. The statistical models we propose are applied to annual maxima of daily temperature data from fully coupled climate models spanning the years 1850 through 2300. They enable us to investigate how extremes will change depending on the geographic location not only in terms of the magnitude, but also in terms of the timing of the changes.

View Article and Find Full Text PDF

The Greenland Ice Sheet has a central role in the global climate system owing to its size, radiative effects and freshwater storage, and as a potential tipping point. Weather stations show that the coastal regions are warming, but the imprint of global warming in the central part of the ice sheet is unclear, owing to missing long-term observations. Current ice-core-based temperature reconstructions are ambiguous with respect to isolating global warming signatures from natural variability, because they are too noisy and do not include the most recent decades.

View Article and Find Full Text PDF

Arctic sea ice retreat is linked to extrapolar thermal energy import, while the potential impact of pan-Arctic river heat discharge on sea-ice loss has been unresolved. We reconstructed the Holocene history of Arctic sea ice and Russian pan-Arctic river heat discharge, combining ice-rafted debris records and sedimentation rates from the East Siberian Arctic Shelf with a compilation of published paleoclimate and observational data. In the mid-Holocene, the early summer (June-July) solar insolation was higher than that during the late Holocene, which led to a larger heat discharge of the Russian pan-Arctic rivers and contributed to more Arctic sea ice retreat.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the self-study methods used by pilots while grounded and their perception of competence decline and confidence upon their return to flying.

Background: Previously, long absences from flying were managed on a case-by-case basis. Thousands of pilots returning to flying as the pandemic eases have burdened airline training systems.

View Article and Find Full Text PDF

Background: Stroke is one of the most frequent diseases, and half of the stroke survivors are left with permanent impairment. Prediction of individual outcome is still difficult. Many but not all patients with stroke improve by approximately 1.

View Article and Find Full Text PDF

Despite tectonic conditions and atmospheric CO levels (pCO) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval.

View Article and Find Full Text PDF

Using transient climate forcing based on simulations from the Alfred Wegener Institute Earth System Model (AWI-ESM), we simulate the evolution of the Greenland Ice Sheet (GrIS) from the last interglacial (125 ka, kiloyear before present) to 2100 AD with the Parallel Ice Sheet Model (PISM). The impact of paleoclimate, especially Holocene climate, on the present and future evolution of the GrIS is explored. Our simulations of the past show close agreement with reconstructions with respect to the recent timing of the peaks in ice volume and the climate of Greenland.

View Article and Find Full Text PDF

The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) - an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δO proxy records to infer ice volume prior to the LGM.

View Article and Find Full Text PDF

Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on 'connectome fingerprinting'.

View Article and Find Full Text PDF
Article Synopsis
  • The paper explores how the Brazilian air transport network has geographically concentrated over time, focusing on what influences this concentration and any disconnects from socioeconomic patterns.
  • It utilizes an econometric analysis with various indices (like Gini and Herfindahl-Hirschman) to understand these dynamics, both accounting for and normalizing economic and demographic factors.
  • The findings indicate a strong correlation between the air network's spatial dynamics and Brazil's economy and population, but suggest that deregulation has introduced some imbalances that could affect airline planning and regulation.
View Article and Find Full Text PDF

Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (~ 3 Ma), a time when temperatures were 2-3ºC warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%.

View Article and Find Full Text PDF

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago).

View Article and Find Full Text PDF

The vast majority of studies using functional magnetic resonance imaging (fMRI) are analyzed on the group level. Standard group-level analyses, however, come with severe drawbacks: First, they assume functional homogeneity within the group, building on the idea that we use our brains in similar ways. Second, group-level analyses require spatial warping and substantial smoothing to accommodate for anatomical variability across subjects.

View Article and Find Full Text PDF