Publications by authors named "Lohman A"

Significance: Genetically encoded calcium ion () indicators (GECIs) are powerful tools for monitoring intracellular concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited.

View Article and Find Full Text PDF

Significance: Genetically encoded calcium ion (Ca) indicators (GECIs) are powerful tools for monitoring intracellular Ca concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited.

View Article and Find Full Text PDF

Mild traumatic brain injuries (mTBI) plague the human population and their prevalence is increasing annually. More so, repeated mTBIs (RmTBI) are known to manifest and compound neurological deficits in vulnerable populations. Age at injury and sex are two important factors influencing RmTBI pathophysiology, but we continue to know little about the specific effects of RmTBI in youth and females.

View Article and Find Full Text PDF

Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules.

View Article and Find Full Text PDF

Only recently has the scope of parental research expanded to include the paternal sphere with epidemiological studies implicating stress, nutrition and alcohol consumption in the neurobiological and behavioral characteristics of offspring. This study was designed to determine if paternal exposure to caffeine, alcohol and exercise prior to conception would improve or exacerbate offspring recovery from adolescent repetitive mild traumatic brain injury (RmTBI). Sires received 7 weeks of standard drinking water, or caffeine and ethanol and were housed in regular cages or cages with running wheels, prior to being mated to control females.

View Article and Find Full Text PDF

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors.

View Article and Find Full Text PDF

Objectives: A prolonged vasoconstriction/hypoperfusion/hypoxic event follows self-terminating focal seizures. The ketogenic diet (KD) has demonstrated efficacy as a metabolic treatment for intractable epilepsy and other disorders but its effect on local brain oxygen levels is completely unknown. This study investigated the effects of the KD on tissue oxygenation in the hippocampus before and after electrically elicited (kindled) seizures and whether it could protect against a seizure-induced learning impairment.

View Article and Find Full Text PDF

The endothelial cell barrier regulates the passage of fluid between the bloodstream and underlying tissues, and barrier function impairment exacerbates the severity of inflammatory insults. To understand how inflammation alters vessel permeability, we studied the effects of the proinflammatory cytokine TNFα on transendothelial permeability and electrophysiology in ex vivo murine veins and arteries. We found that TNFα specifically decreased the barrier function of venous endothelium without affecting that of arterial endothelium.

View Article and Find Full Text PDF

Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function.

View Article and Find Full Text PDF

Adolescent brain injuries have devastating impacts on lifelong health given that adolescence is a critical period for brain development. Adolescents are susceptible to mild traumatic brain injuries (mTBIs) acquired from collisions in contact sports, which are often sustained in a repetitive nature (repetitive mild traumatic brain injuries; RmTBIs), and cause compounding, sexually dimorphic neurological deficits. Neuroinflammation accompanies RmTBIs and may be a central driving force for chronic neurological decline.

View Article and Find Full Text PDF

Purpose: Insomnia is a frequent sleeping disorder in the general and clinical population. With an increasing proportion of health care services being provided as outpatient care, a short, valid and reliable tool is needed to identify insomnia in medical patients under outpatient care in Denmark. The Insomnia Severity Index (ISI) could be the needed tool if found valid and reliable.

View Article and Find Full Text PDF

While the physical and behavioral symptomologies associated with a single mild traumatic brain injury (mTBI) are typically transient, repetitive mTBIs (RmTBI) have been associated with persisting neurological deficits. Therefore, this study examined the progressive changes in behavior and the neuropathological outcomes associated with chronic RmTBI through adolescence and adulthood in male and female Sprague Dawley rats. Rats experienced 2 mTBIs/week for 15 weeks and were periodically tested for changes in motor behavior, cognitive function, emotional disturbances, and aggression.

View Article and Find Full Text PDF

Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation.

View Article and Find Full Text PDF

Background/aim: If blood tests were performed at home, unnecessary trips of patients for chemotherapy could be avoided. The HemoCue® WBC DIFF device was tested at home by 14 patients with breast cancer.

Materials And Methods: A total of 42 measurements of white blood cell (WBC) and neutrophil counts with the device at home were compared to laboratory measurements performed within 3 hours.

View Article and Find Full Text PDF

Rationale: Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone.

View Article and Find Full Text PDF

Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation.

View Article and Find Full Text PDF

To expand the range of experiments that are accessible with optogenetics, we developed a photocleavable protein (PhoCl) that spontaneously dissociates into two fragments after violet-light-induced cleavage of a specific bond in the protein backbone. We demonstrated that PhoCl can be used to engineer light-activatable Cre recombinase, Gal4 transcription factor, and a viral protease that in turn was used to activate opening of the large-pore ion channel Pannexin-1.

View Article and Find Full Text PDF

All connexins (Cx) proteins contain both highly ordered domains (i.e., 4 transmembrane domains) and primarily unstructured regions (i.

View Article and Find Full Text PDF

Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore.

View Article and Find Full Text PDF

Inflammatory cell recruitment to local sites of tissue injury and/or infection is controlled by a plethora of signalling processes influencing cell-to-cell interactions between the vascular endothelial cells (ECs) in post-capillary venules and circulating leukocytes. Recently, ATP-sensitive P2Y purinergic receptors have emerged as downstream regulators of EC activation in vascular inflammation. However, the mechanism(s) regulating cellular ATP release in this response remains elusive.

View Article and Find Full Text PDF

Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1.

View Article and Find Full Text PDF

Background: C-reactive protein (CRP) promotes tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) expression in vitro, and an elevated plasma CRP concentration is associated with an increased risk of vein graft (VG) thrombosis after coronary artery bypass surgery. However, little is known about the effects of CRP on VG TF and PAI-1 expression in vivo, or on VG thrombosis.

Objectives: We studied transgenic (Tg) mice expressing human CRP in a VG model to explore in vivo cause-and-effect relationships between CRP and TF, PAI-1, and VG thrombosis.

View Article and Find Full Text PDF

It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP) plays a fundamental role in cellular communication, with its extracellular accumulation triggering purinergic signaling cascades in a diversity of cell types. While the roles for purinergic signaling in health and disease have been well established, identification and differentiation of the specific mechanisms controlling cellular ATP release is less well understood. Multiple mechanisms have been proposed to regulate ATP release with connexin (Cx) hemichannels and pannexin (Panx) channels receiving major focus.

View Article and Find Full Text PDF