Publications by authors named "Lohani A"

The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery.

View Article and Find Full Text PDF

Assessment of water availability in sub-humid regions is important due to distinct climatic and environmental conditions. In this study, Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) models have been assessed in simulating streamflows in the sub-humid tropical Kabini basin in Kerala, India, spanning 1260 km. Calibration and validation utilized daily weather data from 1997 to 2015 from the Muthankera gauging station.

View Article and Find Full Text PDF

Intraoperative hypotension (IH) is common in patients receiving general anesthesia and can lead to serious complications such as kidney failure, myocardial injury and increased mortality. The Hypotension Prediction Index (HPI) algorithm is a machine learning system that analyzes the arterial pressure waveform and alerts the clinician of an impending hypotension event. The purpose of the study was to compare the frequency of perioperative hypotension in patients undergoing major abdominal surgery with different types of hemodynamic monitoring.

View Article and Find Full Text PDF

Glacier-associated hazards are becoming a common and serious challenge to the high mountainous regions of the world. Glacial lake outburst floods (GLOFs) are one of the most serious unanticipated glacier hazards, with the potential to release a huge amount of water and debris in a short span of time, resulting in the loss of lives, property, and severe damage to downstream valleys. The present study used multi-temporal Landsat and Google earth imageries to analyze the spatio-temporal dynamism of the selected glacial lake (moraine-dammed) in the Satluj basin of Western Himalayas.

View Article and Find Full Text PDF

The present study deals with the evaluation of the age-defying potential of topical cream formulations bearing Geranium essential oil/Calendula essential oil-entrapped ethanolic lipid vesicles (ELVs). Two types of cream formulations were prepared, viz., conventional and ELVs spiked o/w creams.

View Article and Find Full Text PDF

The present investigation was aimed to find out the sun protection factor (SPF) and antioxidant potential of geranium essential oil (GEO) and calendula essential oil (CEO) because having a combination of these two properties moves up the oils as an active ingredient of various cosmeceutical formulations for their preventive and protective properties. Essential oils were obtained by hydrodistillation of Pelargonium graveolens leaves (GEO) and Calendula officinalis flowers (CEO). The composition and identification of chemical constituents of oils were determined by GCMS analysis.

View Article and Find Full Text PDF

The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively.

View Article and Find Full Text PDF

In the present scenario, consumers are searching for personal care products that supply multiple benefits with minimal efforts. The outcome has been the introduction of nanotechnology-based cosmetic products that are safe to use and results driven. Some topical cosmetics can act efficaciously when they reach their target sites present in the deeper layers of the skin.

View Article and Find Full Text PDF

Cosmeceuticals are the fastest growing segment of the personal care industry, and a number of topical cosmeceutical treatments for conditions such as photoaging, hyperpigmentation, wrinkles, and hair damage have come into widespread use. In the cosmeceutical arena nanotechnology has played an important role. Using new techniques to manipulate matter at an atomic or molecular level, they have been at the root of numerous innovations, opening up new perspectives for the future of cosmeceutical industry.

View Article and Find Full Text PDF

Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials.

View Article and Find Full Text PDF

Aims: We aimed to describe evidence-based options for prehospital analgesia, and to offer practical advice to physicians and nonphysicians working in mountain rescue.

Methods: A literature search was performed; the results and recommendations were discussed among the authors. Four authors considered a scenario.

View Article and Find Full Text PDF

Brain tissues from Alzheimer's disease (AD) patients show increased levels of oxidative DNA damage and 7,8-dihydro-8-oxoguanine (8-oxoG) accumulation. In humans, the base excision repair protein 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme that recognizes and excises the mutagenic DNA base lesion 8-oxoG. Recently, two polymorphisms of OGG1, A53T and A288V, have been identified in brain tissues of AD patients, but little is known about how these polymorphisms may contribute to AD.

View Article and Find Full Text PDF

Oxidative DNA damage accumulates with age and is repaired primarily via the base excision repair (BER) pathway. This process is initiated by DNA glycosylases, which remove damaged bases in a substrate-specific manner. The DNA glycosylases human 8-oxoguanine-DNA glycosylase (OGG1) and NEIL1, a mammalian homolog ofEscherichia coli endonuclease VIII, have overlapping yet distinct substrate specificity.

View Article and Find Full Text PDF

It is well accepted that oxidative DNA repair capacity, oxidative damage to DNA and oxidative stress play central roles in aging and disease development. However, the correlation between oxidative damage to DNA, markers of oxidant stress and DNA repair capacity is unclear. In addition, there is no universally accepted panel of markers to assess oxidative stress in humans.

View Article and Find Full Text PDF

Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress.

View Article and Find Full Text PDF

Elevated levels of oxidatively induced DNA lesions have been reported in malignant pancreatic tissues relative to normal pancreatic tissues. However, the ability of the pancreatic cancer cells to remove these lesions has not previously been addressed. This study analyzed the effectiveness of the pancreatic cancer cell line, BxPC-3 to repair 8-hydroxyguanine (8-OH-Gua) relative to a nonmalignant cell line.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer deaths in women. Although the causes of this disease are largely unknown, inefficient repair of oxidatively induced DNA lesions has been thought to play a major role in the transformation of normal breast tissue to malignant breast tissue. Previous studies have revealed higher levels of 8-hydroxyguanine in malignant breast tissue compared to non-malignant breast tissue.

View Article and Find Full Text PDF

Background: Breast cancer is the second leading cause of cancer deaths in women in the United States. Although the causes of this disease are incompletely understood, oxidative DNA damage is presumed to play a critical role in breast carcinogenesis. A common oxidatively induced DNA lesion is 8-hydroxyguanine (8-OH-Gua), which has been implicated in carcinogenesis.

View Article and Find Full Text PDF

DNA-hypermethylation of SOCS genes in breast, ovarian, squamous cell and hepatocellular carcinoma has led to speculation that silencing of SOCS1 and SOCS3 genes might promote oncogenic transformation of epithelial tissues. To examine whether transcriptional silencing of SOCS genes is a common feature of human carcinoma, we have investigated regulation of SOCS genes expression by IFNgamma, IGF-1 and ionizing radiation, in a normal human mammary epithelial cell line (AG11134), two breast-cancer cell lines (MCF-7, HCC1937) and three prostate cancer cell lines. Compared to normal breast cells, we observe a high level constitutive expression of SOCS2, SOCS3, SOCS5, SOCS6, SOCS7, CIS and/or SOCS1 genes in the human cancer cells.

View Article and Find Full Text PDF

Mutagenic oxidative DNA base damage increases with age in prostatic tissue. Various factors may influence this increase including: increased production of reactive oxygen species, increased susceptibility to oxidative stress, alterations in detoxifying enzyme levels or defects in DNA repair. Using liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry, we show increased levels of oxidative DNA base lesions, 8-hydroxyguanine (8-oxoG), 8-hydroxyadenine (8-oxoA) and 5-hydroxycytosine (5OHC) over the baseline in PC-3 and DU-145 prostate cancer cells following exposure to ionizing radiation and a repair period.

View Article and Find Full Text PDF

Recent epidemiological and clinical data suggest that persons with low folic acid levels and elevated homocysteine levels are at increased risk of Alzheimer's disease (AD), but the underlying mechanism is unknown. We tested the hypothesis that impaired one-carbon metabolism resulting from folic acid deficiency and high homocysteine levels promotes accumulation of DNA damage and sensitizes neurons to amyloid beta-peptide (Abeta) toxicity. Incubation of hippocampal cultures in folic acid-deficient medium or in the presence of methotrexate (an inhibitor of folic acid metabolism) or homocysteine induced cell death and rendered neurons vulnerable to death induced by Abeta.

View Article and Find Full Text PDF

While the Ku complex, comprised of Ku70 and Ku80, is primarily involved in the repair of DNA double-strand breaks, it is also believed to participate in additional cellular processes. Here, treatment of embryo fibroblasts (MEFs) derived from either wild-type or Ku80-null (Ku80(-/-)) mice with various stress agents revealed that hydrogen peroxide (H(2)O(2)) was markedly more cytotoxic for Ku80(-/-) MEFs and led to their long-term accumulation in the G2 phase. This differential response was not due to differences in DNA repair, since H(2)O(2)-triggered DNA damage was repaired with comparable efficiency in both Wt and Ku80(-/-) MEFs, but was associated with differences in the expression of important cell cycle regulatory genes.

View Article and Find Full Text PDF

Studies suggest that micronutrients such as the tocopherols, retinol, and the carotenoids have a chemopreventive action against colonic carcinogenesis and that they may be essential for the functioning and structural integrity of the gastrointestinal epithelium. In this study, we have determined the concentrations of tocopherols, retinol, and the carotenoids in human colonic epithelial cells using a noninvasive procedure developed in this laboratory (G.P.

View Article and Find Full Text PDF

Human stool is a heterogeneous mixture of non-digestible food residues, bacteria, cells exfoliated from the gastrointestinal mucosa and other secretory products. We have demonstrated that fresh human stools dispersed in a buffered saline solution can be fractionated over Percoll/BSA gradients to yield 9 discrete bands of cells in the density range of rho 1.033 to 1.

View Article and Find Full Text PDF

Human stools consist of a mixture of undigested food residues, colonic microflora, and cellular components shed from the walls of the gastrointestinal tract. The cellular components are made up mostly of terminally differentiated colonic epithelial cells. Using a combination of Percoll density gradient centrifugation and countercurrent centrifugal elutriation, it is now possible to recover these cells as an enriched fraction from fresh human stools.

View Article and Find Full Text PDF