The advancement in the internet of things (IoT) technologies has made it possible to control and monitor electronic devices at home with just the touch of a button. This has made people lead much more comfortable lifestyles. Elderly people and those with disabilities have especially benefited from voice-assisted home automation systems that allow them to control their devices with simple voice commands.
View Article and Find Full Text PDFDielectrophoresis is a well-understood phenomenon that has been widely utilized in biomedical applications. Recent advancements in miniaturization have contributed to the development of dielectrophoretic-based devices for a wide variety of biomedical applications. In particular, the integration of dielectrophoresis with microfluidics, fluorescence, and electrical impedance has produced devices and techniques that are attractive for screening and diagnosing diseases.
View Article and Find Full Text PDFThe detection and quantification of nucleic acid and proteomic biomarkers in bodily fluids is a critical part of many medical screening and diagnoses. However, majority of the current detection platforms are not ideal for routine, rapid, and low-cost testing in point-of-care settings. To address this issue, we developed a concept for a disposable universal point-of-care biosensor that can detect and quantify nucleic acid and proteomic biomarkers in diluted serum samples.
View Article and Find Full Text PDFMicromachines (Basel)
December 2019
We show that negative dielectrophoresis (DEP) spectroscopy is an effective transduction mechanism of a biosensor for the detection of single nucleotide polymorphism (SNP) in a short DNA strand. We observed a frequency dependence of the negative DEP force applied by interdigitated electrodes to polystyrene microspheres (PM) with respect to changes in both the last and the second-to-last nucleotides of a single-strand DNA bound to the PM. The drift velocity of PM functionalized to single-strand DNA, which is proportional to the DEP force, was measured at the frequency range from 0.
View Article and Find Full Text PDFWe present an integrated dielectrophoretic (DEP) and surface plasmonic technique to quantify ∼1 pM of fluorescent molecules in low conductivity buffers. We have established a DEP force on target molecules to bring those molecules and place them on the nanometallic structures (hotspots) for quantification through surface plasmonic effects. Our results show that the DEP is capable of placing the fluorescent molecules on the hotspots, which are depicted as a significant reduction in the fluorescence lifetime of those molecules.
View Article and Find Full Text PDFWe propose the use of negative dielectrophoresis (DEP) spectroscopy as a technique to improve the detection limit of rare analytes in biological samples. We observe a significant dependence of the negative DEP force on functionalized polystyrene beads at the edges of interdigitated electrodes with respect to the frequency of the electric field. We measured this velocity of repulsion for 0% and 0.
View Article and Find Full Text PDFThe current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test.
View Article and Find Full Text PDF