Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F.
View Article and Find Full Text PDFAllosteric transcription factor (aTF) biosensors are valuable tools for engineering microbes toward a multitude of applications in metabolic engineering, biotechnology, and synthetic biology. One of the challenges toward constructing functional and diverse biosensors in engineered microbes is the limited toolbox of identified and characterized aTFs. To overcome this, extensive bioprospecting of aTFs from sequencing databases, as well as aTF ligand-specificity engineering are essential in order to realize their full potential as biosensors for novel applications.
View Article and Find Full Text PDFCancer Metastasis Rev
June 2020
Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress.
View Article and Find Full Text PDF