Hypoxia is a common feature in various pathophysiological contexts, including tumor microenvironment, and IFN-γ is instrumental for anti-tumor immunity. HIF1α has long been known as a primary regulator of cellular adaptive responses to hypoxia, but its role in IFN-γ induction in hypoxic T cells is unknown. Here, we show that the HIF1α-glycolysis axis controls IFN-γ induction in both human and mouse T cells, activated under hypoxia.
View Article and Find Full Text PDFThe role of HIF1α-glycolysis in regulating IFN-γ induction in hypoxic T cells is unknown. Given that hypoxia is a common feature in a wide array of pathophysiological contexts such as tumor and that IFN-γ is instrumental for protective immunity, it is of great significance to gain a clear idea on this. Combining pharmacological and genetic gain-of-function and loss-of-function approaches, we find that HIF1α-glycolysis controls IFN-γ induction in both human and mouse T cells activated under hypoxia.
View Article and Find Full Text PDFAlaska is a unique US state because of its large size, geographically disparate population density, and physical distance from the contiguous United States. Here, we describe a pattern of SARS-CoV-2 variant emergence across Alaska reflective of these differences. Using genomic data, we found that in Alaska, the Omicron sublineage BA.
View Article and Find Full Text PDFAlaska is a unique US state because of its large size, geographically disparate population density, and physical distance from the contiguous United States. Here, we describe a pattern of SARS-CoV-2 variant emergence across Alaska reflective of these differences. Using genomic data, we found that in Alaska the Omicron sublineage BA.
View Article and Find Full Text PDFThe genus Phlaeopterus Motschulsky, 1853, which was previously known only from North America, is recorded for the Palaearctic fauna for the first time: P. czerskyi (Shavrin, 2001) comb. nov.
View Article and Find Full Text PDF