Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities composed of up to eight soil bacterial species.
View Article and Find Full Text PDFAlnus trees associate with ectomycorrhizal (ECM) fungi and nitrogen-fixing Frankia bacteria and, although their ECM fungal communities are uncommonly host specific and species poor, it is unclear whether the functioning of Alnus ECM fungal symbionts differs from that of other ECM hosts. We used exoenzyme root tip assays and molecular identification to test whether ECM fungi on Alnus rubra differed in their ability to access organic phosphorus (P) and nitrogen (N) when compared with ECM fungi on the non-Frankia host Pseudotsuga menziesii. At the community level, potential acid phosphatase (AP) activity of ECM fungal root tips from A.
View Article and Find Full Text PDFColonization-competition tradeoffs have been shown to be important determinants of succession in plant and animal communities, but their role in ectomycorrhizal (ECM) fungal communities is not well understood. To experimentally examine whether strong spore-based competitors remain dominant on plant root tips as competition shifts to mycelial-based interactions, we investigated the mycelial competitive interactions among three naturally co-occurring ECM species (Rhizopogon occidentalis, R. salebrosus, and Suillus pungens).
View Article and Find Full Text PDFTo examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered.
View Article and Find Full Text PDF