Publications by authors named "Logan Chariker"

This paper is about neural mechanisms of direction selectivity (DS) in macaque primary visual cortex, V1. We present data (on male macaque) showing strong DS in a majority of simple cells in V1 layer 4Cα, the cortical layer that receives direct afferent input from the magnocellular division of the lateral geniculate nucleus (LGN). Magnocellular LGN cells are not direction-selective.

View Article and Find Full Text PDF

This paper offers a theory for the origin of direction selectivity (DS) in the macaque primary visual cortex, V1. DS is essential for the perception of motion and control of pursuit eye movements. In the macaque visual pathway, neurons with DS first appear in V1, in the Simple cell population of the Magnocellular input layer 4Cα.

View Article and Find Full Text PDF

The response to contrast is one of the most important functions of the macaque primary visual cortex, V1, but up to now there has not been an adequate theory for it. To fill this gap in our understanding of cortical function, we built and analyzed a new large-scale, biologically constrained model of the input layer, 4Cα, of macaque V1. We called the new model CSY2.

View Article and Find Full Text PDF

Neuroscience models come in a wide range of scales and specificity, from mean-field rate models to large-scale networks of spiking neurons. There are potential trade-offs between simplicity and realism, versatility and computational speed. This paper is about large-scale cortical network models, and the question we address is one of scalability: would scaling down cell density impact a network's ability to reproduce cortical dynamics and function? We investigated this problem using a previously constructed realistic model of the monkey visual cortex that is true to size.

View Article and Find Full Text PDF

We studied mechanisms for cortical gamma-band activity in the cerebral cortex and identified neurobiological factors that affect such activity. This was done by analyzing the behavior of a previously developed, data-driven, large-scale network model that simulated many visual functions of monkey V1 cortex (Chariker et al., 2016).

View Article and Find Full Text PDF

This paper introduces a class of stochastic models of interacting neurons with emergent dynamics similar to those seen in local cortical populations. Rigorous results on existence and uniqueness of nonequilibrium steady states are proved. These network models are then compared to very simple reduced models driven by the same mean excitatory and inhibitory currents.

View Article and Find Full Text PDF

Unlabelled: A new computational model of the primary visual cortex (V1) of the macaque monkey was constructed to reconcile the visual functions of V1 with anatomical data on its LGN input, the extreme sparseness of which presented serious challenges to theoretically sound explanations of cortical function. We demonstrate that, even with such sparse input, it is possible to produce robust orientation selectivity, as well as continuity in the orientation map. We went beyond that to find plausible dynamic regimes of our new model that emulate simultaneously experimental data for a wide range of V1 phenomena, beginning with orientation selectivity but also including diversity in neuronal responses, bimodal distributions of the modulation ratio (the simple/complex classification), and dynamic signatures, such as gamma-band oscillations.

View Article and Find Full Text PDF

This numerical study documents and analyzes emergent spiking behavior in local neuronal populations. Emphasis is given to a phenomenon we call clustering, by which we refer to a tendency of random groups of neurons large and small to spontaneously coordinate their spiking activity in some fashion. Using a sparsely connected network of integrate-and-fire neurons, we demonstrate that spike clustering occurs ubiquitously in both high firing and low firing regimes.

View Article and Find Full Text PDF