Publications by authors named "Logan Banadyga"

Animal models are key tools for understanding Marburg virus (MARV) pathogenesis and evaluating novel countermeasures. Rodents, in particular, are useful model systems because they are inexpensive and easy to house and handle in maximum containment laboratories. Unfortunately, wild-type MARV, like other filoviruses, does not cause disease in immune-competent rodents and must first be adapted to the rodent host, typically through serial passaging.

View Article and Find Full Text PDF
Article Synopsis
  • The Nipah virus (NiV) and Hendra virus (HeV) are dangerous zoonotic diseases that can lead to serious infections in both humans and animals, highlighting the need for early detection.
  • Researchers have developed two antigen-detection ELISAs (AgELISAs), one specifically for NiV and another that can detect both NiV and HeV, achieving high diagnostic specificities of 100% and 97.8%, respectively.
  • These AgELISAs can rapidly identify NiV and HeV from samples, including those from infected pigs, making them especially useful in remote areas where other diagnostic methods might not be available.
View Article and Find Full Text PDF

Background: Several in silico studies have determined that quercetin, a plant flavonol, could bind with strong affinity and low free energy to SARS-CoV-2 proteins involved in viral entry and replication, suggesting it could block infection of human cells by the virus. In the present study, we examined the ex vivo ability of quercetin to inhibit of SARS-CoV-2 replication and explored the mechanisms of this inhibition.

Methods: Green monkey kidney Vero E6 cells and in human colon carcinoma Caco-2 cells were infected with SARS-CoV-2 and incubated in presence of quercetin; the amount of replicated viral RNA was measured in spent media by RT-qPCR.

View Article and Find Full Text PDF

Although there are no approved countermeasures available to prevent or treat disease caused by Marburg virus (MARV), potently neutralizing monoclonal antibodies (mAbs) derived from B cells of human survivors have been identified. One such mAb, MR191, has been shown to provide complete protection against MARV in nonhuman primates. We previously demonstrated that prophylactic administration of an adeno-associated virus (AAV) expressing MR191 protected mice from MARV.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are important treatment modalities for preventing and treating infectious diseases, especially for those lacking prophylactic vaccines or effective therapies. Recent advances in mAb gene cloning from naturally infected or immunized individuals has led to the development of highly potent human mAbs against a wide range of human and animal pathogens. While effective, the serum half-lives of mAbs are quite variable, with single administrations usually resulting in short-term protection, requiring repeated doses to maintain therapeutic concentrations for extended periods of time.

View Article and Find Full Text PDF

Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories.

View Article and Find Full Text PDF

Filoviruses, including ebolaviruses and marburgviruses, can cause severe and often fatal disease in humans. Over the past several years, antibody therapy has emerged as a promising strategy for the treatment of filovirus disease. Here, we describe 2 distinct cross-reactive monoclonal antibodies (mAbs) isolated from mice immunized with recombinant vesicular stomatitis virus-based filovirus vaccines.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes lethal disease in ferrets, whereas Marburg virus (MARV) does not. To investigate this difference, we first evaluated viral entry by infecting ferret spleen cells with vesicular stomatitis viruses pseudotyped with either MARV or EBOV glycoprotein (GP). Both viruses were capable of infecting ferret spleen cells, suggesting that lack of disease is not due to a block in MARV entry.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes a severe infection called Ebola virus disease (EVD). The pathogenesis of EBOV infection is complex, and outcome has been associated with a variety of immunological and cellular factors. Disease can result from several mechanisms, including direct organ and endothelial cell damage as a result of viral replication.

View Article and Find Full Text PDF

Introduction: Nipah virus (NiV) and Hendra virus (HeV), of the genus , family , are classified as Risk Group 4 (RG4) pathogens that cause respiratory disease in pigs and acute/febrile encephalitis in humans with high mortality.

Methods: A competitive enzyme-linked immunosorbent assay (cELISA) using a monoclonal antibody (mAb) and recombinant NiV glycoprotein (G) was developed and laboratory evaluated using sera from experimental pigs, mini pigs and nonhuman primates. The test depends on competition between specific antibodies in positive sera and a virus-specific mAb for binding to NiV-G.

View Article and Find Full Text PDF

The recent emergence of the monkeypox virus (MPXV) in non-endemic countries has been designated a Public Health Emergency of International Concern by the World Health Organization. There are currently no approved treatments for MPXV infection in the United States or Canada. The antiviral drug tecovirimat (commonly called TPOXX), previously approved for smallpox treatment, is currently being deployed for treatment of MPXV infections where available based on previously accrued data.

View Article and Find Full Text PDF

Filoviruses cause severe hemorrhagic fever with case fatality rates as high as 90%. Filovirus-specific monoclonal antibodies (mAbs) confer protection in nonhuman primates as late as 5 days after challenge, and FDA-approved mAbs REGN-EB3 and mAb114 have demonstrated efficacy against Ebola virus (EBOV) infection in humans. Vectorized antibody expression mediated by adeno-associated virus (AAV) can generate protective and sustained concentrations of therapeutic mAbs in animal models for a variety of infectious diseases, including EBOV.

View Article and Find Full Text PDF

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration.

View Article and Find Full Text PDF

Nipah virus (NiV) and Hendra virus (HeV) are classified as high-consequence zoonotic viruses characterized by high pathogenicity and high mortality in animals and humans. Rapid diagnosis is essential to containing the outbreak. In this study, the henipavirus receptor ephrin B2 was examined to determine whether it could be used as a universal ligand for henipavirus detection in immunoassays.

View Article and Find Full Text PDF

Marburg virus (MARV) is a negative-sense, single-stranded RNA virus that belongs to the family. Despite having caused numerous outbreaks of severe hemorrhagic fever with high case fatality rates, there are still no clinically approved therapeutics or vaccines to treat or prevent MARV disease. Recombinant vesicular stomatitis viruses (rVSVs) expressing heterologous viral glycoproteins have shown remarkable promise as live-attenuated vaccine vectors, with an rVSV-based Ebola virus vaccine having received regulatory approval in the United States and numerous other countries.

View Article and Find Full Text PDF

The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low- versus high-volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding.

View Article and Find Full Text PDF

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S).

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV), which belongs to the genus of the family , is a well studied livestock pathogen and prototypic non-segmented, negative-sense RNA virus. Although VSV is responsible for causing economically significant outbreaks of vesicular stomatitis in cattle, horses, and swine, the virus also represents a valuable research tool for molecular biologists and virologists. Indeed, the establishment of a reverse genetics system for the recovery of infectious VSV from cDNA transformed the utility of this virus and paved the way for its use as a vaccine vector.

View Article and Find Full Text PDF
Article Synopsis
  • * The study tested these unique camelid antibodies on Syrian hamsters infected with hantavirus pulmonary syndrome (HPS) and found that post-exposure treatment successfully reduced the virus and prevented disease symptoms.
  • * Findings suggest that the unique properties of camelid antibodies, such as their smaller size and better solubility, warrant further research for treating severe respiratory diseases like HPS.
View Article and Find Full Text PDF

Widespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine.

View Article and Find Full Text PDF

The domestic ferret (Mustela putorius furo) has long been a popular animal model for evaluating viral pathogenesis and transmission as well as the efficacy of candidate countermeasures. Without question, the ferret has been most widely implemented for modeling respiratory viruses, particularly influenza viruses; however, in recent years, it has gained attention as a novel animal model for characterizing filovirus infections. Although ferrets appear resistant to infection and disease caused by Marburg and Ravn viruses, they are highly susceptible to lethal disease caused by Ebola, Sudan, Bundibugyo, and Reston viruses.

View Article and Find Full Text PDF
Article Synopsis
  • - The 2014-2016 Ebola outbreak underscored the risk of nosocomial spread of the virus, particularly among healthcare workers, emphasizing the need for better preparedness in handling Ebola cases.
  • - A study involved setting up an ICU within a BSL4 lab, where researchers infected non-human primates with Ebola and collected various biological samples to evaluate the risk factors in routine care.
  • - Results showed that while the virus was detectable in blood early on, other bodily fluids were only positive later; maintaining good hygiene practices helped mitigate risks associated with droplet spread and surface contamination.
View Article and Find Full Text PDF

Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory disease caused by orthohantaviruses in the Americas with a fatality rate as high as 35%. In South America, Andes orthohantavirus (, ANDV) is a major cause of HCPS, particularly in Chile and Argentina, where thousands of cases have been reported since the virus was discovered. Two strains of ANDV that are classically used for experimental studies of the virus are Chile-9717869, isolated from the natural reservoir, the long-tailed pygmy rice rat, and CHI-7913, an isolate from a lethal human case of HCPS.

View Article and Find Full Text PDF