Publications by authors named "Loetscher H"

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.

View Article and Find Full Text PDF

Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased MAO-B expression in astroglia has been observed adjacent to amyloid plaques in AD patient brains. This phenomenon is hypothesized to lead to increased production of hydrogen peroxide and reactive oxygen species (ROS), thereby contributing to AD pathology.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) regulates differing needs of the various brain regions by controlling transport of blood-borne components from the neurovascular circulation into the brain parenchyma. The mechanisms underlying region-specific transport across the BBB are not completely understood. Previous work showed that pericytes are key regulators of BBB function.

View Article and Find Full Text PDF

The Blood-Brain Barrier (BBB) restricts access of large molecules to the brain. The low endocytic activity of brain endothelial cells (BECs) is believed to limit delivery of immunoglobulins (IgG) to the brain parenchyma. Here, we report that endogenous mouse IgG are localized within intracellular vesicles at steady state in BECs in vivo.

View Article and Find Full Text PDF

The blood-brain barrier and the blood-cerebrospinal fluid barrier prevent access of biotherapeutics to their targets in the central nervous system and therefore prohibit the effective treatment of neurological disorders. In an attempt to discover novel brain transport vectors in vivo, we injected a T7 phage peptide library and continuously collected blood and cerebrospinal fluid (CSF) using a cisterna magna cannulated conscious rat model. Specific phage clones were highly enriched in the CSF after four rounds of selection.

View Article and Find Full Text PDF

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody.

View Article and Find Full Text PDF

Background: Gantenerumab is a fully human anti-Aβ monoclonal antibody in clinical development for the treatment of Alzheimer disease (AD).

Objectives: To investigate whether treatment with gantenerumab leads to a measurable reduction in the level of Aβ amyloid in the brain and to elucidate the mechanism of amyloid reduction.

Design: A multicenter, randomized, double-blind, placebo-controlled, ascending-dose positron emission tomographic study.

View Article and Find Full Text PDF

The amyloid-β lowering capacity of anti-Aβ antibodies has been demonstrated in transgenic models of Alzheimer's disease (AD) and in AD patients. While the mechanism of immunotherapeutic amyloid-β removal is controversial, antibody-mediated sequestration of peripheral Aβ versus microglial phagocytic activity and disassembly of cerebral amyloid (or a combination thereof) has been proposed. For successful Aβ immunotherapy, we hypothesized that high affinity antibody binding to amyloid-β plaques and recruitment of brain effector cells is required for most efficient amyloid clearance.

View Article and Find Full Text PDF

Insulin-like growth factor I (IGF-I) has important anabolic and homeostatic functions in tissues like skeletal muscle, and a decline in circulating levels is linked with catabolic conditions. Whereas IGF-I therapies for musculoskeletal disorders have been postulated, dosing issues and disruptions of the homeostasis have so far precluded clinical application. We have developed a novel IGF-I variant by site-specific addition of polyethylene glycol (PEG) to lysine 68 (PEG-IGF-I).

View Article and Find Full Text PDF

Neuropsychiatric adverse events have been reported in influenza patients with and without exposure to oseltamivir (Tamiflu), triggering speculation as to whether oseltamivir may be interacting with any human receptors and contributing to such neuropsychiatric events. In this study, the in vitro selectivity profile of oseltamivir prodrug and active metabolite was investigated. Both compounds lacked clinically relevant pharmacological activities on human, rodent and primate neuraminidases and on a panel of 155 other molecular targets, including those relevant for mood, cognition and behavior.

View Article and Find Full Text PDF

Antibodies against beta-amyloid peptides (Abetas) are considered an important therapeutic opportunity in Alzheimer's disease. Despite the vast interest in Abeta no thermodynamic data on the interaction of antibodies with Abeta are available as yet. In the present study we use isothermal titration calorimetry (ITC) and surface plasmon resonance to provide a quantitative thermodynamic analysis of the interaction between soluble monomeric Abeta(1-40) and mouse monoclonal antibodies (mAb).

View Article and Find Full Text PDF

Cerebrovascular dysfunction appears to be involved in Alzheimer's disease (AD). In double mutant amyloid precursor protein/presenilin 2 (APP/PS2) mice, a transgenic model of AD, vessel homeostasis is disturbed. These mice have elevated levels of vascular endothelial growth factor (VEGF) and increased brain endothelial cell division but abnormally low brain vessel density.

View Article and Find Full Text PDF

Transgenic mice expressing mutant forms of both amyloid-beta (Abeta) precursor protein (APP) and presenilin (PS) 2 develop severe brain amyloidosis and cognitive deficits, two pathological hallmarks of Alzheimer's disease (AD). One-year-old APP/PS2 mice with high brain levels of Abeta and abundant Abeta plaques show disturbances in spatial learning and memory. Treatment of these deteriorated mice with a systemic slow-release formulation of insulin-like growth factor I (IGF-I) significantly ameliorated AD-like disturbances.

View Article and Find Full Text PDF

The pathological role of ApoE4 in Alzheimer's disease (AD) is not fully elucidated yet but there is strong evidence that ApoE is involved in Abeta deposition, which is an early hallmark of AD neuropathology. Overexpression of ApoE in neuroblastoma cells (Neuro2a) leads to the generation of an intracellular 13 kDa carboxy-terminal fragment of ApoE comparable to fragments seen in brains of AD patients. ApoE4 generates more of this fragment than ApoE2 and E3 suggesting a potential pathological role of these fragments in Alzheimer's disease.

View Article and Find Full Text PDF

The transgenic mouse line PS2APP (PS2N141I x APP(swe)) develops an age-related cognitive decline associated with severe amyloidosis, mimicking the pathophysiologic processes in Alzheimer disease (AD). In the quest for biomarkers to monitor, noninvasively, the progression of the disease, we used magnetic resonance imaging and 1H-spectroscopy to characterize PS2APP mice throughout their life span. Morphometric measurements revealed only small size differences to controls.

View Article and Find Full Text PDF

Transgenic mice, expressing mutant beta-amyloid precursor proteins (betaAPPs), have lead to a better understanding of the pathophysiological processes in Alzheimer's disease (AD). In many of these models, however, the temporal development of cognitive decline and the relationship to Abeta deposition and inflammation are unclear. We now report a novel transgenic mouse line, PS2APP (PS2N141I x APPswe), which develops a severe cerebral amyloidosis in discrete brain regions, and present a cross-sectional analysis of these mice at 4, 8, 12, and 16 months of age.

View Article and Find Full Text PDF

These studies have addressed the role of caspase-3 activation in neuronal death after cerebral ischemia in different animal models. The authors were unable to show activation of procaspase-3 measured as an induction of DEVDase (Asp-Glu-Val-Asp) activity after focal or transient forebrain ischemia in rats. DEVDase activity could not be induced in the cytosolic fraction of the brain tissue obtained from these animals by exogenous cytochrome c/dATP and Ca2+.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive impairment of brain function as a consequence of ongoing neuronal cell death. Apoptotic mechanisms have been implicated in this process and a major involvement of caspase-3, a typical pro-apoptotic executioner protease, has been claimed. In this review, the role of caspase-3 in neuronal cell loss in animal models of stroke is discussed and critically evaluated.

View Article and Find Full Text PDF

Mutant presenilins (PS) contribute to the pathogenesis of familial Alzheimer's disease (FAD) by enhancing the production of Abeta42 from beta-amyloid precursor protein. Presenilins are endoproteolytically processed to N-terminal and C-terminal fragments, which together form a stable 1:1 complex. We have mapped the cleavage site in the PS2 protein by direct sequencing of its C-terminal fragment isolated from mouse liver.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the invariant accumulation of senile plaques predominantly composed of the pathologically relevant 42-amino acid amyloid beta-peptide (Abeta42). The presenilin (PS) proteins play a key role in Abeta generation. FAD-associated mutations in PS1 and PS2 enhance the production of Abeta42, and PS1 is required for physiological Abeta production, since a gene knockout of PS1 and dominant negative mutations of PS1 abolish Abeta generation.

View Article and Find Full Text PDF

Proplasmepsin II is the zymogen of plasmepsin II, an aspartic proteinase used by Plasmodiumfalciparum to digest hemoglobin during the blood stage of malaria. A large shift between the N-domain and the central and C-domains of proplasmepsin II opens the active site cleft, preventing the formation of a functional aspartic proteinase active site. This mode of inhibition of catalytic activity has not been observed in any other aspartic proteinase zymogen.

View Article and Find Full Text PDF

The Alzheimer's disease (AD) associated presenilin (PS) proteins are proteolytically processed. One of the processing pathways involves cleavage by caspases. Pharmacological inhibition of caspases is currently being discussed as a treatment for a variety of neurodegenerative diseases, including AD.

View Article and Find Full Text PDF