The inhibition of angiogenesis is a promising avenue for cancer treatment. Although some angiostatic compounds are in the process of development and testing, these often prove ineffective in vivo or have unwanted side effects. We have designed, synthesized, and evaluated a small library of nonpeptidic, calixarene-based protein surface topomimetics that display chemical substituents to approximate the molecular dimensions and amphipathic features (hydrophobic and positively charged residues) of the antiangiogenic peptide anginex, which, like many antiangiogenic proteins, consists primarily of an antiparallel beta-sheet structure as the functional unit.
View Article and Find Full Text PDFThe apparent complexity of biology increases as more biomolecular interactions that mediate function become known. We have used NMR spectroscopy and molecular modeling to provide direct evidence that tetrameric platelet factor-4 (PF4) and dimeric interleukin-8 (IL8), two members of the CXC chemokine family, readily interact by exchanging subunits and forming heterodimers via extension of their antiparallel beta-sheet domains. We further demonstrate using functional assays that PF4/IL8 heterodimerization has a direct and significant consequence on the biological activity of both chemokines.
View Article and Find Full Text PDFBased on structure-activity relationships of the angiostatic beta-sheet-forming peptide anginex, we have designed a mimetic, 6DBF7, which inhibits angiogenesis and tumor growth in mice. 6DBF7 is composed of a beta-sheet-inducing dibenzofuran (DBF)-turn mimetic and two short key amino acid sequences from anginex. This novel antiangiogenic molecule is more effective in vivo than parent anginex.
View Article and Find Full Text PDFAnginex is a designed peptide 33mer that functions as a cytokine-like agent to inhibit angiogenesis. Although this short linear peptide has been shown by NMR and CD to form a nascent beta-sheet conformation in solution, the actual bioactive structure formed upon binding to its receptor on the surface of endothelial cells could be quite different. By using a series of double-cysteine disulphide-bridged analogues, we provide evidence in the present study that the beta-sheet is in fact the bioactive conformation of anginex.
View Article and Find Full Text PDFThe current research aimed to define hypothesis-based anti-angiogenic properties of the vascular targeting agent combretastatin A-4 phosphate (combreAp). The in vitro wound assay indicated that combreAp potently inhibited migration of endothelial cells (EC). A significant inhibition of migration could already be measured after 2 hr of treatment.
View Article and Find Full Text PDFThe de novo designed angiogenesis inhibitor anginex was tested in vitro and in vivo for its mechanism of action and antitumor activity. The data presented here demonstrate that anginex is a powerful antiangiogenic agent with significant antitumor activity. The mechanism of action of anginex was found to be the induction of anoikis leading to apoptosis in angiogenically activated endothelial cells, resulting in an up to 90% inhibition of migration in the wound assay.
View Article and Find Full Text PDF