Publications by authors named "Loef E"

Development of new scintillator materials is a continuous effort, which recently has been focused on materials with higher stopping power. Higher stopping power can be achieved if the compositions include elements such as Tl (Z=81) or Lu (Z=71), as the compounds gain higher densities and effective atomic numbers. In context of medical imaging this translates into high detection efficiency (count rates), therefore, better image quality (statistics, thinner films) or lower irradiation doses to patients in addition to lowering of cost.

View Article and Find Full Text PDF

Gene therapy based on the CRISPR/Cas9 system has emerged as a promising strategy for treating the monogenic fragile skin disorder recessive dystrophic epidermolysis bullosa (RDEB). With this approach problematic wounds could be grafted with gene edited, patient-specific skin equivalents. Precise gene editing using homology-directed repair (HDR) is the ultimate goal, however low efficiencies have hindered progress.

View Article and Find Full Text PDF

Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity.

View Article and Find Full Text PDF

The ability to study migratory behavior of immune cells is crucial to understanding the dynamic control of the immune system. Migration induced by chemokines is often assumed to be directional (chemotaxis), yet commonly used end-point migration assays are confounded by detecting increased cell migration that lacks directionality (chemokinesis). To distinguish between chemotaxis and chemokinesis we used the classic "under-agarose assay" in combination with video-microscopy to monitor migration of CCR7+ human monocyte-derived dendritic cells and T cells in response to a concentration gradient of CCL19.

View Article and Find Full Text PDF

B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood.

View Article and Find Full Text PDF

T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells.

View Article and Find Full Text PDF

It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms.

View Article and Find Full Text PDF

The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface-bound and soluble forms. Here we show that plasmin cleaves surface-bound CCL21 to release the C-terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form.

View Article and Find Full Text PDF

Contact between T cells and APCs and activation of an effective immune response trigger cellular polarization and the formation of a structured interface known as the immunological synapse. Interactions across the synapse and secretion of T cell and APC-derived factors into the perisynaptic compartment regulate synapse formation and activation of T cells. We report that the serine protease inhibitor neuroserpin, an axonally secreted protein thought to play roles in the formation of the neuronal synapse and refinement of synaptic activity, is expressed in human naïve effector memory and central memory subsets of CD4(+) and CD8(+) T cells, as well as monocytes, B cells, and NK cells.

View Article and Find Full Text PDF

In this paper we report on the fabrication and characterization of SrHfO(3):Ce ceramics. Powders were prepared by solid-state synthesis using metal oxides and carbonates. X-ray diffraction measurements showed that phase-pure SrHfO(3) is formed at 1200°C.

View Article and Find Full Text PDF

A rapid and simple means for determination of the brass composition and plating weight on brass-plated steel wire and cord is described. The sample preparation procedure is very simple; wires can be mounted as such, and cords can be mounted either as such or as unstranded single wires. The copper content of the brass and the plating weight are determined by measuring the intensities of the different elements by sequential X-ray fluorescence spectrometry (XRF).

View Article and Find Full Text PDF