Background: Alzheimer's Disease (AD) is a progressive memory disorder that causes irreversible cognitive decline. Given that there is currently no cure, it is critical to detect AD in its early stage during the disease progression. Recently, many statistical learning methods have been presented to identify cognitive decline with temporal data, but few of these methods integrate heterogeneous phenotype and genetic information together to improve the accuracy of prediction.
View Article and Find Full Text PDFMotivation: Breast cancer is a type of cancer that develops in breast tissues, and, after skin cancer, it is the most commonly diagnosed cancer in women in the United States. Given that an early diagnosis is imperative to prevent breast cancer progression, many machine learning models have been developed in recent years to automate the histopathological classification of the different types of carcinomas. However, many of them are not scalable to large-scale datasets.
View Article and Find Full Text PDFIEEE Trans Med Imaging
June 2020
Alzheimer's disease (AD) is a serious neurodegenerative condition that affects millions of individuals across the world. As the average age of individuals in the United States and the world increases, the prevalence of AD will continue to grow. To address this public health problem, the research community has developed computational approaches to sift through various aspects of clinical data and uncover their insights, among which one of the most challenging problem is to determine the biological mechanisms that cause AD to develop.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a serious neurodegenerative condition that affects millions of people across the world. Recently machine learning models have been used to predict the progression of AD, although they frequently do not take advantage of the longitudinal and structural components associated with multi-modal medical data. To address this, we present a new algorithm that uses the multi-block alternating direction method of multipliers to optimize a novel objective that combines multi-modal longitudinal clinical data of various modalities to simultaneously predict the cognitive scores and diagnoses of the participants in the Alzheimer's Disease Neuroimaging Initiative cohort.
View Article and Find Full Text PDFAIDS is a syndrome caused by the HIV. During the progression of AIDS, a patient's immune system is weakened, which increases the patient's susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2018
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people around the world. As populations in the United States and worldwide age, the prevalence of Alzheimer's disease will only increase. In turn, the social and financial costs of AD will create a difficult environment for many families and caregivers across the globe.
View Article and Find Full Text PDF