Publications by authors named "Loconsole G"

Background: The aim of this project is to study the prevalence of cyberbullies (CB) and cybervictims (CV) and cyberbully-victims(CBV) in Italian adolescent students and a possible correlation with physical activity (PA) levels and as potential protective factor.

Methods: The Italian version of the European Cyberbullying Intervention Project Questionnaire (ECIPQ) was used for categorized cyberbullies (CB) and cybervictims (CV). Six items of the IPAQ-A Italian version were considered to measure the PA levels.

View Article and Find Full Text PDF

Pathogens ultra-sensitive detection is vital for early diagnosis and provision of restraining actions and/or treatments. Among plant pathogens, Xylella fastidiosa is among the most threatening as it can infect hundreds of plant species worldwide with consequences on agriculture and the environment. An electrolyte-gated transistor is here demonstrated to detect X.

View Article and Find Full Text PDF

Some plants of were selected in a nursery for investigation of sanitary status of candidate mother plants before vegetative propagation. The presence of yellow spots and leaf discoloration symptoms pushed for a generic diagnosis through deep sequencing to discover systemic pathogens. Either dsRNA or total RNA were extracted and used in nanopore and Illumina platform for cDNA-PCR, direct RNA and total RNA rRNA-depleted sequencing.

View Article and Find Full Text PDF

The invasive plant pathogen currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS).

View Article and Find Full Text PDF

In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense.

View Article and Find Full Text PDF

Background: Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease.

View Article and Find Full Text PDF

The olive tree is one of the most important economic, cultural, and environmental resources for Italy, in particular for the Apulian region, where it shows a wide diversity. The increasing attention to the continuous loss of plant genetic diversity due to social, economic and climatic changes, has favored a renewed interest in strategies aimed at the recovery and conservation of these genetic resources. In the frame of a project for the valorization of the olive Apulian biodiversity (Re.

View Article and Find Full Text PDF

Citrus can host a number of important vector- and graft-transmissible pathogens which cause severe diseases. Citrus disease management and clean stock programs require pathogen detection systems which must be economical and sensitive to maintain a healthy citrus industry. Rapid diagnostic tests for simultaneous detection of major graft-transmissible disease agents enable reduction of cost and time.

View Article and Find Full Text PDF

A dramatic outbreak of Xylella fastidiosa decimating olive was discovered in 2013 in Apulia, Southern Italy. This pathogen is a quarantine bacterium in the European Union (EU) and created unprecedented turmoil for the local economy and posed critical challenges for its management. With the new emerging threat to susceptible crops in the EU, efforts were devoted to gain basic knowledge on the pathogen biology, host, and environmental interactions (e.

View Article and Find Full Text PDF

In autumn 2013, the presence of Xylella fastidiosa, a xylem-limited Gram-negative bacterium, was detected in olive stands of an area of the Ionian coast of the Salento peninsula (Apulia, southern Italy), that were severely affected by a disease denoted olive quick decline syndrome (OQDS). Studies were carried out for determining the involvement of this bacterium in the genesis of OQDS and of the leaf scorching shown by a number of naturally infected plants other than olive. Isolation in axenic culture was attempted and assays were carried out for determining its pathogenicity to olive, oleander and myrtle-leaf milkwort.

View Article and Find Full Text PDF

We report here the complete and annotated genome sequence of the plant-pathogenic bacterium subsp. strain De Donno. This strain was recovered from an olive tree severely affected by olive quick decline syndrome (OQDS), a devastating olive disease associated with infections in susceptible olive cultivars.

View Article and Find Full Text PDF

Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica.

View Article and Find Full Text PDF

The recent introduction of in Europe and its involvement in the Olive Quick Decline Syndrome (OQDS) in Apulia (Salento, Lecce district, South Italy) led us to investigate the biology and transmission ability of the meadow spittlebug, , which was recently demonstrated to transmit to periwinkle plants. Four xylem-sap-feeding insect species were found within and bordering olive orchards across Salento during a survey carried out from October 2013 to December 2014: was the most abundant species on non-olive vegetation in olive orchards as well as on olive foliage and was the only species that consistently tested positive for the presence of using real-time PCR. , whose nymphs develop within spittle on weeds during the spring, are likely to move from weeds beneath olive trees to olive canopy during the dry period (May to October 2014).

View Article and Find Full Text PDF

Background: The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv.

View Article and Find Full Text PDF

A novel virus has been identified by next-generation sequencing (NGS) in privet (Ligustrum japonicum L.) affected by a graft-transmissible disease characterized by leaf blotch symptoms resembling infectious variegation, a virus-like privet disease with an unclear aetiology. This virus, which has been tentatively named 'privet leaf blotch-associated virus' (PrLBaV), was absent in non-symptomatic privet plants, as revealed by NGS and reverse transcription-polymerase chain reaction (RT-PCR).

View Article and Find Full Text PDF

Citrus ringspot is a graft-transmissible disease, and at least two taxonomically distinct viral species are associated with this syndrome: Citrus psorosis virus (CPsV) and Indian citrus ringspot virus (ICRSV). Neither of these two viruses was detected, however, by serological or molecular assays in symptomatic tissues from citrus trees in southern Iran, where the ringspot syndrome is widespread. By contrast, electron microscopy and molecular assays revealed the presence of a rhabdovirus-like virus, which was graft transmitted to several citrus species and mechanically to herbaceous hosts.

View Article and Find Full Text PDF

The draft genome sequence of Xylella fastidiosa CO33 isolate, retrieved from symptomatic leaves of coffee plant intercepted in northern Italy, is reported. The CO33 genome size is 2,681,926 bp with a GC content of 51.7%.

View Article and Find Full Text PDF

We determined the draft genome sequence of the Xylella fastidiosa CoDiRO strain, which has been isolated from olive plants in southern Italy (Apulia). It is associated with olive quick decline syndrome (OQDS) and characterized by extensive scorching and desiccation of leaves and twigs.

View Article and Find Full Text PDF

Discovery of Xylella fastidiosa from olive trees with "Olive quick decline syndrome" in October 2013 on the west coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards during a 3-mo survey was the meadow spittlebug, Philaenus spumarius (L.) (Hemiptera: Aphrophoridae).

View Article and Find Full Text PDF

The RNA genome of pathogenic and non-pathogenic variants of citrus Hop stunt viroid (HSVd) differ by five to six nucleotides located within the variable (V) domain referred to as the "cachexia expression motif". Sensitive hosts such as mandarin and its hybrids are seriously affected by cachexia disease. Current methods to differentiate HSVd variants rely on lengthy greenhouse biological indexing on Parson's Special mandarin and/or direct nucleotide sequence analysis of amplicons from RT-PCR of HSVd-infected plants.

View Article and Find Full Text PDF

A number of important citrus pathogens are spread by graft propagation, arthropod vector transmission and inadvertent import and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs require pathogen detection systems which are economical and sensitive to maintain a healthy industry. To this end, multiplex quantitative real-time PCR (qPCR) assays were developed allowing high-throughput and simultaneous detection of some major invasive citrus pathogens.

View Article and Find Full Text PDF

Molecular features and genomic organization were determined for Citrus yellow vein clearing virus (CYVCV), the putative viral causal agent of yellow vein clearing disease of lemon trees, reported in Pakistan, India, and more recently in Turkey and China. CYVCV isolate Y1 from Adana, Turkey, was used for deep sequencing analysis of the virus-induced small RNA fractions and for mechanical and graft inoculation of herbaceous and citrus indicator plants. A polyclonal antiserum was developed from CYVCV-Y1 purified from Phaseolus vulgaris and used in western blot assays to characterize the coat protein of CYVCV-Y1 and determine its serological relationship with related viruses.

View Article and Find Full Text PDF

In the attempt to identify the causal agent of Citrus chlorotic dwarf disease (CCDD), a virus-like disorder of citrus, the small RNA fraction and total DNA from symptomatic citrus plants were subjected to high-throughput sequencing. DNA fragments deriving from an apparently new geminivirus-like agent were found and assembled by NGS to re-construct the entire viral genome. The newly identified virus has a circular single-stranded DNA genome comprising five open reading frames (ORFs) with sequence homologies with those encoded by geminiviruses.

View Article and Find Full Text PDF

Huanglongbing (HLB) is a serious disease of citrus worldwide. Three different 'Candidatus Liberibacter' species are associated with HLB: 'Ca. Liberibacter asiaticus', 'Ca.

View Article and Find Full Text PDF