Changes in intracellular calcium [Ca(2+)](i) levels control critical cytosolic and nuclear events that are involved in the initiation and progression of tumor angiogenesis in endothelial cells (ECs). Therefore, the mechanism(s) involved in agonist-induced Ca(2+)(i) signaling is a potentially important molecular target for controlling angiogenesis and tumor growth. Several studies have shown that blood vessels in tumors differ from normal vessels in their morphology, blood flow and permeability.
View Article and Find Full Text PDFActivation of TRPC3 channels is concurrent with inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-mediated intracellular Ca(2+) release and associated with phosphatidylinositol 4,5-bisphosphate hydrolysis and recruitment to the plasma membrane. Here we report that interaction of TRPC3 with receptor for activated C-kinase-1 (RACK1) not only determines plasma membrane localization of the channel but also the interaction of IP(3)R with RACK1 and IP(3)-dependent intracellular Ca(2+) release. We show that TRPC3 interacts with RACK1 via N-terminal residues Glu-232, Asp-233, Glu-240, and Glu-244.
View Article and Find Full Text PDFMammalian transient receptor potential canonical (TRPC) channels are a family of nonspecific cation channels that are activated in response to stimulation of phospholipase C (PLC)-dependent hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate. Despite extensive studies, the mechanism(s) involved in regulation of mammalian TRPC channels remains unknown. Presence of various protein-interacting domains in TRPC channels have led to the suggestion that they associate with proteins that are involved in their function and regulation.
View Article and Find Full Text PDFTRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1-TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca(2+) influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP(2)) hydrolysis, generation of IP(3) and DAG, and IP(3)-induced Ca(2+) release from the intracellular Ca(2+) store via inositol trisphosphate receptor (IP(3)R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca(2+) entry mechanisms.
View Article and Find Full Text PDFThe mechanism(s) involved in agonist-stimulation of TRPC3 channels is not yet known. Here we demonstrate that TRPC3-N terminus interacts with VAMP2 and alphaSNAP. Further, endogenous and exogenously expressed TRPC3 colocalized and coimmunoprecipitated with SNARE proteins in neuronal and epithelial cells.
View Article and Find Full Text PDFGPCR-mediated activation of the Ca2+ signalling cascade leads to stimulation of Ca2+ influx into non-excitable cells. Both store-dependent and independent channels likely contribute towards this Ca2+ influx. However, the identity of the channels and exact mechanism by which they are activated remains elusive.
View Article and Find Full Text PDFCa(2+) influx via plasma membrane Trp3 channels is proposed to be regulated by a reversible interaction with inositol trisphosphate receptor (IP(3)R) in the endoplasmic reticulum. Condensation of the cortical actin layer has been suggested to physically disrupt this interaction and inhibit Trp3-mediated Ca(2+) influx. This study examines the effect of cytoskeletal reorganization on the localization and function of Trp3 and key Ca(2+) signaling proteins.
View Article and Find Full Text PDFTrp1 has been proposed as a component of the store-operated Ca(2+) entry (SOC) channel. However, neither the molecular mechanism of SOC nor the role of Trp in this process is yet understood. We have examined possible molecular interactions involved in the regulation of SOC and Trp1 and report here for the first time that Trp1 is assembled in signaling complex associated with caveolin-scaffolding lipid raft domains.
View Article and Find Full Text PDFThe trp gene family has been proposed to encode the store-operated Ca(2+) influx (SOC) channel(s). This study examines the role of Trp1 in the SOC mechanism of salivary gland cells. htrp1, htrp3, and Trp1 were detected in the human submandibular gland cell line (HSG).
View Article and Find Full Text PDFWe have previously reported the presence of two Ca2+ influx components with relatively high (KCa = 152 +/- 79 microM) and low (KCa = 2.4 +/- 0.9 mM) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al.
View Article and Find Full Text PDFWe have previously reported that rat parotid gland basolateral plasma membrane vesicles (BLMV) have a relatively high affinity Ca2+ transport pathway and an unsaturable Ca2+ flux component (Lockwich et al., 1994. J.
View Article and Find Full Text PDFDivalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca(2+)-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into depl-acini was decreased when the incubation temperature was lowered from 37 to 4 degrees C.
View Article and Find Full Text PDFThe uncoupling of Ca2+ transport from ATP hydrolysis in the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by trypsin digestion was re-investigated by comparing ATPase activity with the ability of the enzyme to occlude Eu3+ (a transport parameter) after various tryptic digests. With this method, re-examination of uncoupling by tryptic digest of the ATPase revealed that TD2 cleavage (Arg-198) had no effect on either occlusion or ATPase activity. Digestion past TD2 in the presence of 5 mM Ca2+ and at 25 degrees C resulted in the loss of about 70% of the ATPase activity, but no loss of occlusion.
View Article and Find Full Text PDFDivalent cation permeability of rat parotid gland basolateral plasma membranes was examined in dispersed parotid acini (by Ca2+ or Mn2+ entry) and in isolated basolateral plasma membrane vesicles (BLMV, by 45Ca2+ influx). Mn2+ entry (fura2 quenching) was about 1.6 fold higher in internal Ca2+ pool-depleted acini (Ca(2+)-depl acini) than in unstimulated cells.
View Article and Find Full Text PDFThis study examines the Ca2+ permeability of basolateral plasma membrane vesicles (BLMVs) isolated from the rat parotid gland by monitoring the rate of 45Ca2+ efflux from actively-loaded (via the Ca(2+)-ATPase) inside-out BLMVs. Ca2+ efflux from BLMVs into a K(+)-gluconate medium which hyperpolarizes the cytoplasmic side (i.e.
View Article and Find Full Text PDFCrit Rev Oral Biol Med
October 1993
In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca(2+)-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms.
View Article and Find Full Text PDFEuropium luminescence from europium bound to sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase indicates that there are two high affinity calcium binding sites. Furthermore, the two calcium ions at the binding sites are highly coordinated by the protein as the number of H2O molecules surrounding the Ca2+ ions are 3 and 0.5.
View Article and Find Full Text PDFThe 7F0----5D0 excitation spectrum of Eu3+ bound to the high-affinity calcium sites of SR (Ca2+ + Mg2+)-ATPase diminishes upon occlusion of the Eu3+ into the interior of the enzyme. This "quenching" was found to be caused by the enzyme itself because trypsin digestion could relieve it. The level of digestion needed to relieve the quenching is beyond the level needed to eliminate occlusion; thus, the two processes are not related.
View Article and Find Full Text PDFThe two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion.
View Article and Find Full Text PDF