Publications by authors named "Lochlan Fennell"

Researching the murine epigenome in disease models has been hampered by the lack of appropriate and cost-effective DNA methylation arrays. Here we perform a comprehensive, comparative analysis between the Mouse Methylation BeadChip (MMB) and reduced-representation bisulfite sequencing (RRBS) in two murine models of colorectal carcinogenesis. We evaluate the coverage, variability, and ability to identify differential DNA methylation of RRBS and MMB.

View Article and Find Full Text PDF

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis.

View Article and Find Full Text PDF

Background: The typical methylation patterns associated with cancer are hypermethylation at gene promoters and global genome hypomethylation. Aberrant CpG island hypermethylation at promoter regions and global genome hypomethylation have not been associated with histological colorectal carcinomas (CRC) subsets. Using Illumina's 450 k Infinium Human Methylation beadchip, the methylome of 82 CRCs were analyzed, comprising different histological subtypes: 40 serrated adenocarcinomas (SAC), 32 conventional carcinomas (CC) and 10 CRCs showing histological and molecular features of microsatellite instability (hmMSI-H), and, additionally, 35 normal adjacent mucosae.

View Article and Find Full Text PDF

Objective: Sessile serrated lesions (SSLs) are common across the age spectrum, but the mutant cancers arising occur predominantly in the elderly. Aberrant DNA methylation is uncommon in SSL from young patients. Here, we interrogate the role of ageing and DNA methylation in SSL initiation and progression.

View Article and Find Full Text PDF

Background: Aspirin reduces the incidence of conventional adenomas driven by APC mutation and thus colorectal cancer. The effect of aspirin on the ~20% of colorectal cancers arising via BRAF mutation is yet to be established.

Methods: Braf;Villin-Cre mice were allocated to a control (n = 86) or aspirin-supplemented (n = 83) diet.

View Article and Find Full Text PDF

Background: WNT activation is a hallmark of colorectal cancer. mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in mutant cancers.

View Article and Find Full Text PDF

The serrated neoplasia pathway gives rise to a distinct subgroup of colorectal cancers distinguished by the presence of mutant BRAF and the CpG Island Methylator Phenotype (CIMP). BRAF mutant CRC are commonly associated with microsatellite instability, which have an excellent clinical outcome. However, a proportion of BRAF mutant CRC retain microsatellite stability and have a dismal prognosis.

View Article and Find Full Text PDF

Background: Sessile serrated adenomas (SSAs) are common polyps which give rise to 20-30% of colorectal cancer (CRC). SSAs display clinicopathologic features which present challenges in surveillance, including overrepresentation in young patients, proclivity for the proximal colon and rarity of histologic dysplasia (referred to then as SSAs with dysplasia, SSADs). Once dysplasia develops, there is rapid progression to CRC, even at a small size.

View Article and Find Full Text PDF

Background & Aims: Colorectal cancer is an epigenetically heterogeneous disease, however, the extent and spectrum of the CpG island methylator phenotype (CIMP) is not clear.

Methods: Genome-scale methylation and transcript expression were measured by DNA Methylation and RNA expression microarray in 216 unselected colorectal cancers, and findings were validated using The Cancer Genome Atlas 450K and RNA sequencing data. Mutations in epigenetic regulators were assessed using CIMP-subtyped Cancer Genome Atlas exomes.

View Article and Find Full Text PDF

Objective: Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, , and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein.

View Article and Find Full Text PDF

Liver metastasis is the major cause of death following a diagnosis of colorectal cancer (CRC). In this study, we compared the copy number profiles of paired primary and liver metastatic CRC to better understand how the genomic structure of primary CRC differs from the metastasis. Paired primary and metastatic tumors from 16 patients and their adjacent normal tissue samples were analyzed using single nucleotide polymorphism arrays.

View Article and Find Full Text PDF

Background: Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis.

View Article and Find Full Text PDF

Colorectal cancer is a major cause of cancer death and approximately 20% arises within serrated polyps, which are under-recognized and poorly understood. Human serrated colorectal polyps frequently exhibit both oncogenic BRAF mutation and widespread DNA methylation changes, which are important in silencing genes restraining neoplastic progression. Here, we investigated whether in vivo induction of mutant Braf is sufficient to result in coordinated promoter methylation changes for multiple cancer-related genes.

View Article and Find Full Text PDF

Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown.

View Article and Find Full Text PDF

The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers.

View Article and Find Full Text PDF