To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental villous tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated new and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples ( = 36) with robust partial correlation based on the top 30 hyper- and hypomethylated sites identified per cell type.
View Article and Find Full Text PDFTo distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type.
View Article and Find Full Text PDFBackgrounds: Infection during pregnancy is a significant public health concern due to the increased risk of adverse birth outcomes. Group B Streptococcus or Streptococcus agalactiae (GBS) stands out as a major bacterial cause of neonatal morbidity and mortality. We aimed to explore the involvement of reactive oxygen species (ROS) and oxidative stress pathways in pro-inflammatory responses within human fetal membrane tissue, the target tissue of acute bacterial chorioamnionitis.
View Article and Find Full Text PDFIntroduction: Hematopoietic stem cells are cells that differentiate into blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal/fetal health, cross-talk between placental and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied.
View Article and Find Full Text PDFGroup B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1).
View Article and Find Full Text PDFTrichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown.
View Article and Find Full Text PDFSyncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), -(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts.
View Article and Find Full Text PDFBackground: Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied.
View Article and Find Full Text PDFThe placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells).
View Article and Find Full Text PDFCurr Opin Environ Sci Health
December 2022
Detection of 1,4-dioxane has been reported in shallow groundwater in neighborhoods of the city of Ann Arbor, Michigan. Michigan has a voluntary 1,4-dioxane shallow groundwater screening level based on its potential for vapor intrusion. Calculations show that if 1,4-dioxane-contaminated water were to enter a basement and evaporate, potentially unhealthy concentrations of 1,4-dioxane could arise in homes with damp basements under certain conditions.
View Article and Find Full Text PDFCurr Opin Environ Sci Health
December 2022
Disposal practices of industrial wastewater by Gelman Sciences led to high concentrations of 1,4-dioxane in groundwater in Michigan, USA. Since discovery of off-site pollution in 1984, the contaminated groundwater prompted closure of over 124 private wells, closure of one municipal well, and prohibition of most groundwater uses in a large section of the city of Ann Arbor. Recent 1,4-dioxane detections in shallow groundwater in Ann Arbor and in township residential wells pose new exposure threats.
View Article and Find Full Text PDFNumerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes.
View Article and Find Full Text PDFDuring pregnancy, the placental villous cytotrophoblasts differentiate via cell fusion and multinucleation to create syncytiotrophoblasts, a cell type at the maternal-fetal interface. Apoptosis of syncytiotrophoblasts is associated with adverse pregnancy outcomes. The human trophoblast BeWo cell line has been used as an in vitro model for this differentiation process, also known as syncytialization.
View Article and Find Full Text PDFStudies have shown that the trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine (DCVC) inhibits cytokine secretion in pathogen stimulated fetal membrane tissue but little is known about the mechanism for these effects, including which cell types or transcriptomic pathways are impacted. Macrophages play a critical role in fetal membrane immune responses during infection. We tested the hypothesis that DCVC inhibits lipopolysaccharide (LPS) stimulated inflammation pathways in macrophage-like THP-1 cells.
View Article and Find Full Text PDFResidential and occupational exposures to the industrial solvents perchloroethylene (PERC) and trichloroethylene (TCE) present public health concerns. In humans, maternal PERC and TCE exposures can be associated with adverse birth outcomes. Because PERC and TCE are biotransformed to toxic metabolites and placental dysfunction can contribute to adverse birth outcomes, the present study compared the toxicity of key PERC and TCE metabolites in three in vitro human placenta models.
View Article and Find Full Text PDFExposure to trichloroethylene (TCE), an industrial solvent, is associated with several adverse pregnancy outcomes in humans and decreased fetal weight in rats. However, effects of TCE on energy metabolites in amniotic fluid, which have associations with pregnancy outcomes, has not been published previously. In the current exploratory study, timed-pregnant Wistar rats were exposed to 480 mg TCE/kg/day via vanilla wafer or to vehicle (wafer) alone from gestational day (GD) 6-16.
View Article and Find Full Text PDFPreterm birth occurs disproportionately in the USA non-Hispanic Black population. Black women also face disproportionate exposure to certain environmental chemicals. The goal of this study was to use publicly available toxicogenomic data to identify chemical exposures that may contribute to preterm birth disparities.
View Article and Find Full Text PDFBackground: Early delivery remains a significant public health problem that has long-lasting impacts on mother and child. Understanding biological mechanisms underlying timing of labor, including endocrine disruption, can inform prevention efforts.
Methods: Gestational hormones were measured among 976 women in PROTECT, a longitudinal birth cohort in Puerto Rico.
The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFTrichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line.
View Article and Find Full Text PDFExposure to the industrial solvent trichloroethylene (TCE) has been associated with adverse pregnancy outcomes in humans and decreased fetal weight in rats. TCE kidney toxicity can occur through formation of reactive metabolites via its glutathione (GSH) conjugation metabolic pathway, largely unstudied in the context of pregnancy. To investigate the contribution of the GSH conjugation pathway and oxidative stress to TCE toxicity during pregnancy, we exposed rats orally to 480 mg TCE/kg/day from gestational day (GD) 6 to GD 16 with and without N-acetyl-L-cysteine (NAC) at 200 mg/kg/day or aminooxyacetic acid (AOAA) at 20 mg/kg/day as pre/co-treatments from GD 5-16.
View Article and Find Full Text PDFMetal exposure has been associated with a wide range of adverse birth outcomes and oxidative stress is a leading hypothesis of the mechanism of action of metal toxicity. We assessed the relationship between maternal exposure to essential and non-essential metals and metalloids in pregnancy and oxidative stress markers, and sought to identify windows of vulnerability and effect modification by fetal sex. In our analysis of 215 women from the PROTECT birth cohort study, we measured 14 essential and non-essential metals in urine samples at three time points during pregnancy.
View Article and Find Full Text PDFJ Mol Biol Methods
July 2020
A growing need exists to consider fetal sex as a biological variable and accurately assess sex-specific effects. Among the multiple methods used to determine fetal sex, quantitative real-time polymerase chain reaction (qRT-PCR) of (sex-determining region Y) with genomic DNA (gDNA) is commonly used in addition to use of methodologies such as transcriptomics and detection of Barr body. However, messenger RNA (mRNA), a product of gDNA, has not been previously assessed for sex determination.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are byproducts of incomplete combustion reactions and are ubiquitous in the environment, leading to widespread human exposure via inhalation and ingestion pathways. PAHs have been implicated as endocrine disrupting compounds in previous animal and in vitro studies, but human studies are currently lacking. Pregnant women and their developing fetuses are particularly susceptible populations to environmental contaminants, in part because alterations in hormone physiology during gestation can have adverse consequences on the health of the pregnancy.
View Article and Find Full Text PDFIn addition to providing a physical compartment for gestation, the fetal membranes (FM) are an active immunological barrier that provides defense against pathogenic microorganisms that ascend the gravid reproductive tract. Pathogenic infection of the gestational tissues (FM and placenta) is a leading known cause of preterm birth (PTB). Some environmental toxicants decrease the capacity for organisms to mount an immune defense against pathogens.
View Article and Find Full Text PDF