Proc Natl Acad Sci U S A
February 2009
To identify Mycobacterium tuberculosis (Mtb) antigens as candidates for a subunit vaccine against tuberculosis (TB), we have employed a CD4+ T-cell expression screening method. Mtb-specific CD4+ T-cell lines from nine healthy PPD positive donors were stimulated with different antigenic substrates including autologous dendritic cells (DC) infected with Mtb, or cultured with culture filtrate proteins (CFP), and purified protein derivative of Mtb (PPD). These lines were used to screen a genomic Mtb library expressed in Escherichia coli and processed and presented by autologous DC.
View Article and Find Full Text PDFPlaque reduction neutralization tests (PRNTs) are commonly used for measuring levels of dengue virus (DENV) neutralizing antibodies. However, these assays lack a standardized format, generally have a low sample throughput, and are labor-intensive. The objective of the present study was to evaluate two alternative DENV neutralizing antibody assays: an enzyme-linked immunosorbent assay-based microneutralization (MN) assay, and a fluorescent antibody cell sorter-based, DC-SIGN expresser dendritic cell (DC) assay.
View Article and Find Full Text PDFA tuberculosis (TB) vaccine candidate, Mtb72, was developed following an antigen discovery program involving a combination of expression cloning strategies and evaluation of human immune responses. Adjuvant selection was also performed, resulting in the prioritization of AS02A and AS01B, and an industrial process for vaccine production was developed. Safety, immunogenicity, and protection studies in mice, guinea pigs, rabbits, and monkeys supported the initiation of clinical development of Mtb72f in AS02A.
View Article and Find Full Text PDFMTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis.
View Article and Find Full Text PDFA tuberculosis vaccine candidate consisting of a 72-kDa polyprotein or fusion protein based upon the Mtb32 and Mtb39 antigens of Mycobacterium tuberculosis and designated Mtb72F was tested for its protective capacity as a potential adjunct to the Mycobacterium bovis BCG vaccine in the mouse and guinea pig models of this disease. Formulation of recombinant Mtb72F (rMtb72F) in an AS02A adjuvant enhanced the Th1 response to BCG in mice but did not further reduce the bacterial load in the lungs after aerosol challenge infection. In the more stringent guinea pig disease model, rMtb72F delivered by coadministration with BCG vaccination significantly improved the survival of these animals compared to BCG alone, with some animals still alive and healthy in their appearance at >100 weeks post-aerosol challenge.
View Article and Find Full Text PDFKey Ags of Mycobacterium tuberculosis initially identified in the context of host responses in healthy purified protein derivative-positive donors and infected C57BL/6 mice were prioritized for the development of a subunit vaccine against tuberculosis. Our lead construct, Mtb72F, codes for a 72-kDa polyprotein genetically linked in tandem in the linear order Mtb32(C)-Mtb39-Mtb32(N). Immunization of C57BL/6 mice with Mtb72F DNA resulted in the generation of IFN-gamma responses directed against the first two components of the polyprotein and a strong CD8(+) T cell response directed exclusively against Mtb32(C).
View Article and Find Full Text PDFThere have been many new promising approaches to developing human vaccines against tuberculosis (TB). Advances in gene and antigen identification, availability of genome sequences, a greater understanding of immune mechanisms in resistance to TB, the development of adjuvants and delivery systems to stimulate T-cell immunity, and increased funding from public and private agencies are some of the reasons for progress in this area. Dozens of vaccine candidates have been tested in animal models in recent years, and several of these are poised to move into clinical trials in the next several years.
View Article and Find Full Text PDFThe nasopharyngeal bacterial flora of healthy rhesus macaques was surveyed for the presence of Neisseria and Haemophilus species, as well as Moraxella catarrhalis. M. catarrhalis was found both in healthy rhesus macaques and in possibly immunocompromised rhesus macaques.
View Article and Find Full Text PDFThe Lyme disease vaccine is based on the outer-surface lipoprotein (OspA) of the pathogen Borrelia burgdorferi, and 95% of vaccine recipients develop substantial titers of antibodies against OspA. Here, we identified seven individuals with very low antibody titers after vaccination (low responders). The macrophages of low responders produced less tumor necrosis factor-alpha and interleukin-6 after OspA stimulation and had lower cell-surface expression of Toll-like receptor (TLR) 1 as compared to normal cells, but normal expression of TLR2.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
August 2001
OpcA is an integral outer membrane from the Gram-negative pathogen Neisseria meningitidis that plays a role in adhesion of meningococci to host cells. The protein was overexpressed in Escherichia coli in an insoluble form and a procedure developed for refolding by rapid dilution from denaturant into detergent solution. The refolded material was identical to native OpcA isolated from meningococci, as judged by overall molecular weight, migration on SDS-PAGE and reaction against monoclonal antibodies.
View Article and Find Full Text PDFBorrelia burgdorferi outer surface protein (Osp) A is preferentially expressed by spirochetes in the Ixodes scapularis gut and facilitates pathogen-vector adherence in vitro. Here we examined B. burgdorferi-tick interactions in vivo by using Abs directed against OspA from each of the three major B.
View Article and Find Full Text PDFIn Europe, Borrelia garinii OspA serotype 4 has been isolated from the cerebrospinal fluid of patients but, up to now, has never been identified among culture isolates from Ixodes ricinus ticks. This information raises the question of whether OspA serotype 4 is transmitted by I. ricinus in nature.
View Article and Find Full Text PDFThere is a current high demand for nontypable Haemophilus influenzae (NTHi) vaccines. Various options for the composition of such vaccines are possible. Decisions about the vaccine composition have to take into account the antigenic variability of NTHi, so even complex immunogens such as whole bacteria would preferentially have a tailor-made antigenic composition.
View Article and Find Full Text PDFLyme disease is caused by genetically divergent spirochetes, including 3 pathogenic genospecies: Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii.
View Article and Find Full Text PDFBorrelia burgdorferi outer surface protein (Osp) A has been used as a Lyme disease vaccine that blocks transmission: OspA antibodies of immune hosts enter ticks during blood feeding and destroy spirochetes before transmission to the host can occur. B. burgdorferi produce OspA in the gut of unfed Ixodes scapularis ticks, and many spirochetes repress OspA production during the feeding process.
View Article and Find Full Text PDFWe recently determined that passive transfer of serum directed against a synthetic peptide called LB1 or a recombinant fusion protein immunogen [LPD-LB1(f)(2,1,3)] could prevent otitis media after challenge with a homologous nontypeable Haemophilus influenzae (NTHI) isolate. NTHI residing in the nasopharynx was rapidly cleared from this site, thus preventing it from ascending the eustachian tube and inducing otitis media in chinchillas compromised by an ongoing viral upper respiratory tract infection. While LB1 is based solely on one NTHI adhesin, the latter immunogen, LPD-LB1(f)(2,1,3), was designed to incorporate two NTHI antigens shown to play a role in the pathogenesis of otitis media; lipoprotein D (LPD) and the P5-homologous fimbrin adhesin.
View Article and Find Full Text PDFThree separate studies, two involving active-immunization regimens and one involving a passive-transfer protocol, were conducted to initially screen and ultimately more fully assess several nontypeable Haemophilus influenzae outer membrane proteins or their derivatives for their relative protective efficacy in chinchilla models of otitis media. Initial screening of these antigens (P5-fimbrin, lipoprotein D, and P6), delivered singly or in combination with either Freund's adjuvant or alum, indicated that augmented bacterial clearance from the nasopharynx, the middle ears, or both anatomical sites could be induced by parenteral immunization with P5-fimbrin combined with lipoprotein D, lipoprotein D alone, or the synthetic chimeric peptide LB1 (derived from P5-fimbrin), respectively. Data from a second study, wherein chinchillas were immunized with LB1 or lipoprotein D, each delivered with alum, again indicated that clearance of nontypeable H.
View Article and Find Full Text PDFThe efficacy of an outer surface protein A (OspA) vaccine in three different formulations was investigated in the rhesus monkey. The challenge infection was administered using Ixodes scapularis ticks that were infected with the B31 strain of Borrelia burgdorferi. Protection was assessed against both infection and disease, by a variety of procedures.
View Article and Find Full Text PDFSequence variability of the outer surface protein (Osp) A among Borrelia burgdorferi sl species suggests that a monovalent OspA vaccine may not protect against the various Borrelia present in Eurasia. Here, we confirmed that a monovalent recombinant OspA (rOspA) vaccine does not protect mice against Ixodes ricinus mediated infection with B. burgdorferi ss, Borrelia garinii and Borrelia afzelii.
View Article and Find Full Text PDFThe response to recombinant vaccines for Lyme disease was studied to determine serum antibody levels effective in protecting against tick-transmitted infection. Data presented here demonstrate a significant correlation between antibody to an epitope on outer surface protein A (OspA) and protection against infection with Borrelia burgdorferi in canines and mice. A competitive enzyme-linked immunosorbent assay was developed to measure antibody to a site on OspA, defined by monoclonal antibody LA-2.
View Article and Find Full Text PDF