Publications by authors named "Lobasso S"

Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure.

View Article and Find Full Text PDF

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment.

View Article and Find Full Text PDF

Introduction: Subtle cognitive dysfunction and mental fatigue are frequent after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, characterizing the so-called long COVID-19 syndrome. This study aimed to correlate cognitive, neurophysiological, and olfactory function in a group of subjects who experienced acute SARS-CoV-2 infection with persistent hyposmia at least 12 weeks before the observation.

Methods: For each participant (32 post-COVID-19 patients and 16 controls), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) data were acquired using an integrated EEG-fNIRS system during the execution of a P300 odd-ball task and a Stroop test.

View Article and Find Full Text PDF

Background: Barth syndrome is a rare genetic disease characterized by cardiomyopathy, skeletal muscle weakness, neutropenia, growth retardation and organic aciduria. This variable phenotype is caused by pathogenic hemizygous variants of the gene on the X chromosome, which impair metabolism of the mitochondrial phospholipid cardiolipin. Although most patients are usually diagnosed in the first years of life, the extremely variable clinical picture and the wide range of clinical presentations may both delay diagnosis.

View Article and Find Full Text PDF

Barth Syndrome (BTHS), a genetic disease associated with early-onset cardioskeletal myopathy, is caused by loss-of-function mutations of the TAFAZZIN gene, which is responsible for remodeling the mitochondrial phospholipid cardiolipin (CL). Deregulation of CL biosynthesis and maturation in BTHS mitochondria result in a dramatically increased monolysocardiolipin (MLCL)/CL ratio associated with bioenergetic dysfunction. One of the most promising therapeutic approaches for BTHS includes the mitochondria-targeted tetrapeptide SS-31, which interacts with CL.

View Article and Find Full Text PDF

Cardiolipin (CL), a dimeric phospholipid carrying four fatty acid chains in its structure, is the lipid marker of mitochondria, wherein it plays a crucial role in the functioning of the inner membrane. Its metabolite monolysocardiolipin (MLCL) is physiologically nearly absent in the lipid extract of animal cells and its appearance is the hallmark of the Barth syndrome (BTHS), a rare and often misdiagnosed genetic disease that causes severe cardiomyopathy in infancy. The method described here generates a "cardiolipin fingerprint" and allows a simple assay of the relative levels of CL and MLCL species in cellular lipid profiles.

View Article and Find Full Text PDF

Melanoma, one of the most lethal cutaneous cancers, is characterized by its ability to metastasize to other distant sites, such as the bone. Melanoma cells revealed a variable propensity to be attracted toward bone fragments, and melanoma-derived exosomes play a role in regulating the osteotropism of these cells. We have here investigated the lipid profiles of melanoma cell lines (LCP and SK-Mel28) characterized by different metastatic propensities to colonize the bone.

View Article and Find Full Text PDF

The reduction of sperm motility and count, or oligoasthenozoospermia, is one of the major causes of reduced fertility or infertility in men. Lipid composition of spermatozoa is important in determining their functional characteristics, in particular on motility, acrosomal exocytosis or fusogenic properties of the sperm. Here we investigated the levels of semen lipids in 11 infertile patients with severe oligoasthenozoospermia and 9 normozoospermic subjects with normal motility values.

View Article and Find Full Text PDF

The brine shrimp is an interesting experimental system for studies of developmental processes. Hatching of dormant cysts gives rise to shrimp larvae called nauplii, characterized by numerous naupliar stages representing the first forms of brine shrimp life cycle. Here combined Thin Layer Chromatography (TLC) and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight/Mass Spectrometry (MALDI-TOF/MS) analyses have been performed to gain information on the lipid profiles of cysts and two naupliar stages.

View Article and Find Full Text PDF

Barth syndrome is a rare X-linked disease affecting less than 200 individuals worldwide. Several comorbidities have been associated with the pathology and, among those, cardiac myopathy and neutropenia are the most life threatening. The appropriate nutritive support is important to sustain the everyday life of Barth syndrome patients given the chronic fatigue they experience.

View Article and Find Full Text PDF

Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions.

View Article and Find Full Text PDF

Barth syndrome (BTHS), an X-linked disease associated with cardioskeletal myopathy, neutropenia, and organic aciduria, is characterized by abnormalities of card-iolipin (CL) species in mitochondria. Diagnosis of the disease is often compromised by lack of rapid and widely available diagnostic laboratory tests. The present study describes a new method for BTHS screening based on MALDI-TOF/MS analysis of leukocyte lipids.

View Article and Find Full Text PDF

The aim of this study was to explore the possibility of using an archaeal microorganism as a host system for expressing mammalian olfactory receptors (ORs). We have selected the archaeon Haloferax volcanii as a cell host system and one of the most extensively investigated OR, namely I7-OR, whose preferred ligands are short-chain aldehydes, such as octanal, heptanal, nonanal. A novel plasmid has been constructed to express the rat I7-OR, fused with a hexahistidine-tag for protein immunodetection.

View Article and Find Full Text PDF

Lipids of cytochrome c oxidase (COX) of Paracoccus denitrificans have been identified by MALDI-TOF MS direct analyses of isolated protein complexes, avoiding steps of lipid extraction or chromatographic separation. Two different COX preparations have been considered in this study: the enzyme core consisting of subunits I and II (COX 2-SU) and the complete complex comprising all four subunits (COX 4-SU). In addition, MALDI-TOF MS lipid profiles of bacterial COX are also compared with those of the isolated mitochondrial COX and bacterial bc1 complex.

View Article and Find Full Text PDF

Polar membrane lipids of an archaeal microorganism recently isolated from the natural salt lake Fuente de Piedra (Málaga, Spain) have been studied by means of TLC in combination with MALDI-TOF mass spectrometry. The major phospholipids are the ether lipids phosphatidylglycerophosphate methyl ester and phosphatidylglycerosulfate, while phosphatidylglycerol is barely detectable; in addition the bisphosphatidylglycerol (archaeal cardiolipin) has been detected for the first time in a representative of the genus Halobellus. The structures of glycolipids, including a glycosyl-cardiolipin, have been elucidated by post source decay (PSD) mass spectrometry analysis.

View Article and Find Full Text PDF

Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ∼80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (∼300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles.

View Article and Find Full Text PDF

We report changes of the content of anionic phospholipids in Bacillus subtilis in response to hypoxic conditions and inhibition of terminal respiration. Cardiolipin accumulates rapidly when bacteria are suspended in non-growth medium under reduced aeration or exposed to the inhibitor cyanide; the increase of cardiolipin occurs at the expense of its precursor phosphatidylglycerol and is temperature-dependent. Depending on the extent of hypoxic stress, membranes containing different levels of cardiolipin can be isolated from B.

View Article and Find Full Text PDF

SWNTs have been functionalized with an archaeal glycolipid which wraps around the nano-objects in a single layer or bilayer, as a function of the nanotube diameter. Hydrogen bonds between the lipid glucose rings and the aromatic SWNT walls are involved in the formation of hybrid complexes resulting in electron transfer from the glycolipid to the nanotubes.

View Article and Find Full Text PDF

The structures of archaeal glycerophospholipids and glycolipids are unique in that they consist of phytanyl substituents ether linked to the glycerol backbone, imparting stability to the molecules. In this contribution, we described multiple-stage linear ion-trap combined with high resolution mass spectrometry toward structural characterization of this lipid family desorbed as lithiated adduct ions or as the [M-H](-) and [M-2H](2-) ions by ESI. MS(n) on various forms of the lithiated adduct ions yielded rich structurally informative ions leading to complete structure identification of this lipid family, including the location of the methyl branches of the phytanyl chain.

View Article and Find Full Text PDF

The lipidome of the marine hyperthermophilic archaeon Pyrococcus furiosus was studied by means of combined thin-layer chromatography and MALDI-TOF/MS analyses of the total lipid extract. 80-90% of the major polar lipids were represented by archaeol lipids (diethers) and the remaining part by caldarchaeol lipids (tetraethers). The direct analysis of lipids on chromatography plate showed the presence of the diphytanylglycerol analogues of phosphatidylinositol and phosphatidylglycerol, the N-acetylglucosamine-diphytanylglycerol phosphate plus some caldarchaeol lipids different from those previously described.

View Article and Find Full Text PDF

The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid.

View Article and Find Full Text PDF

As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol) linked to glycerol exclusively with ether bonds. Giant vesicles (GVs) constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes) were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins.

View Article and Find Full Text PDF

Squarebop I bacteriorhodopsin is a light-activated proton pump present in the membranes of the archeon Haloquadratum walsbyi, a square-shaped organism representing 50-60% of microbial population in the crystallizer ponds of the coastal salterns. Here we describe: (1) the operating mode of a bioreactor designed to concentrate the saltern biomass through a microfiltration process based on polyethersulfone hollow fibers; (2) the isolation of Squarebop I bacteriorhodopsin from solubilized biomass by means of a single chromatographic step; (3) tightly bound lipids to the isolated and purified protein as revealed by MALDI-TOF/MS analysis; (4) the photoactivity of Squarebop I bacteriorhodopsin isolated from environmental samples by flash spectroscopy. Yield of the isolation process is 150 μg of Squarebop I bacteriorhodopsin from 1l of 25-fold concentrated biomass.

View Article and Find Full Text PDF

We have isolated and characterized the light-driven proton pump Bop I from the ultrathin square archaeon Haloquadratum walsbyi, the most abundant component of the dense microbial community inhabiting hypersaline environments. The disruption of cells by hypo-osmotic shock yielded Bop I retinal protein highly enriched membranes, which contain one main 27 kDa protein band together with a high content of the carotenoid bacterioruberin. Light-induced pH changes were observed in suspensions of Bop I retinal protein-enriched membranes under sustained illumination.

View Article and Find Full Text PDF