Publications by authors named "Lob H"

Preeclampsia is a devastating complication of pregnancy characterized by late-gestation hypertension and proteinuria. Because the only definitive treatment is delivery of the fetus and placenta, preeclampsia contributes to increased morbidity and mortality of both mother and fetus. The BPH/5 mouse model, which spontaneously develops a syndrome strikingly similar to preeclampsia, displays excessive inflammation and suppression of inflammation improves pregnancy outcomes.

View Article and Find Full Text PDF

A role for oxidative stress in the brain has been suggested in the pathogenesis of diet-induced obesity (DIO), although the underlying neural regions and mechanisms remain incompletely defined. We tested the hypothesis that NADPH oxidase-dependent oxidative stress in the paraventricular nucleus (PVN), a hypothalamic energy homeostasis center, contributes to the development of DIO. Cre/LoxP technology was coupled with selective PVN adenoviral microinjection to ablate , the obligatory subunit for NADPH oxidase activity, in mice harboring a conditional allele.

View Article and Find Full Text PDF

Preeclampsia (PE) is a devastating disorder of pregnancy that classically presents with maternal hypertension and proteinuria after 20 wk of gestation. In addition to being a leading cause of maternal and fetal morbidity/mortality, epidemiological and prospective studies have revealed long-term consequences for both the mother and baby of preeclamptic pregnancies, including chronic hypertension as well as other cardiovascular diseases and metabolic derangements. To better understand the effect of in utero exposure of PE on offspring, we utilized the BPH/5 mouse, a spontaneous model of the maternal and fetal PE syndrome.

View Article and Find Full Text PDF

Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy.

View Article and Find Full Text PDF

Recent studies have emphasized the role of perivascular inflammation in cardiovascular disease. We studied mechanisms of perivascular leukocyte infiltration in angiotensin II (Ang II)-induced hypertension and their links to vascular dysfunction. Chronic Ang II infusion in mice increased immune cell content of T cells (255 ± 130 to 1664 ± 349 cells/mg; P < 0.

View Article and Find Full Text PDF

Preeclampsia is a hypertensive, proteinuric disease that affects 5-10% of all pregnancies and is a leading cause of maternal and perinatal morbidity/mortality (Soto et al., J Matern Fetal Neonatal Med 25: 498-507, 2011). The primary treatment for preeclampsia still is delivery of the fetus and placenta.

View Article and Find Full Text PDF

Obesity is associated with vascular diseases that are often attributed to vascular oxidative stress. We tested the hypothesis that vascular oxidative stress could induce obesity. We previously developed mice that overexpress p22phox in vascular smooth muscle, tg(sm/p22phox), which have increased vascular ROS production.

View Article and Find Full Text PDF

Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load.

View Article and Find Full Text PDF

Reactive oxygen species and the NADPH oxidases contribute to hypertension via mechanisms that remain undefined. Reactive oxygen species produced in the central nervous system have been proposed to promote sympathetic outflow, inflammation, and hypertension, but the contribution of the NADPH oxidases to these processes in chronic hypertension is uncertain. We therefore sought to identify how NADPH oxidases in the subfornical organ (SFO) of the brain regulate blood pressure and vascular inflammation during sustained hypertension.

View Article and Find Full Text PDF

Background: Psychological stress is a significant risk factor for hypertension and also directly affects the immune system. We have previously reported that T lymphocytes are essential for development of hypertension and that the central nervous system contributes to peripheral T-lymphocyte activation and vascular inflammation in this disease; however, the role of T-cell activation in stress-related hypertension remains unclear.

Methods: Wild-type and T-cell-deficient (RAG-1(-/-)) mice were subjected to daily episodes of stress and blood pressure was measured.

View Article and Find Full Text PDF

Previous studies indicate that superoxide is important in the modulation of blood pressure but have not specifically identified the cell types or organs involved. We created mice with loxP sites flanking the extracellular superoxide dismutase (SOD3) gene. These mice were crossed with mice expressing inducible Cre-recombinase driven by the smooth muscle myosin heavy chain promoter allowing tissue-specific deletion of SOD3.

View Article and Find Full Text PDF

Objective: Interleukin 17A (IL17A) is involved in many inflammatory processes, but its role in atherosclerosis remains controversial. We examined the role of IL17A in mouse and human atherosclerosis.

Methods And Results: Atherosclerosis was induced in apolipoprotein E (ApoE)(-/-) and IL17A/ApoE(-/-) mice using high-fat feeding, angiotensin II infusion, or partial carotid ligation.

View Article and Find Full Text PDF

In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system.

View Article and Find Full Text PDF

Rationale: We have previously found that T lymphocytes are essential for development of angiotensin II-induced hypertension; however, the mechanisms responsible for T-cell activation in hypertension remain undefined.

Objective: We sought to study the roles of the CNS and pressure elevation in T-cell activation and vascular inflammation caused by angiotensin II.

Methods And Results: To prevent the central actions of angiotensin II, we created anteroventral third cerebral ventricle (AV3V) lesions in mice.

View Article and Find Full Text PDF

Recent studies have shown that both innate and adaptive immunity contribute to hypertension. Inflammatory cells, including macrophages and T cells accumulate in the vessel wall, particularly in the perivascular fat, and in the kidney of hypertensive animals. Mice lacking lymphocytes are resistant to the development of hypertension, and adoptive transfer of T cells restores hypertensive responses to angiotensin II and DOCA-salt challenge.

View Article and Find Full Text PDF

We have shown previously that T cells are required for the full development of angiotensin II-induced hypertension. However, the specific subsets of T cells that are important in this process are unknown. T helper 17 cells represent a novel subset that produces the proinflammatory cytokine interleukin 17 (IL-17).

View Article and Find Full Text PDF

The circumventricular organs (CVOs) lack a well-formed blood-brain barrier and produce superoxide in response to angiotensin II and other hypertensive stimuli. This increase in central superoxide has been implicated in the regulation of blood pressure. The extracellular superoxide dismutase (SOD3) is highly expressed in cells associated with CVOs and particularly with tanycytes lining this region.

View Article and Find Full Text PDF

Objectives: This study sought to examine the expression and activity of the calcium-dependent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in human atherosclerotic coronary arteries.

Background: The NOX-based NADPH oxidases are major sources of reactive oxygen species (ROS) in human vessels. Several NOX homologues have been identified, but their relative contribution to vascular ROS production in coronary artery disease (CAD) is unclear; NOX5 is a unique homolog in that it is calcium dependent and thus could be activated by vasoconstrictor hormones.

View Article and Find Full Text PDF

The extracellular superoxide dismutase 3 (SOD3) is highly expressed in both blood vessels and lungs. In different models of pulmonary injury, SOD3 is reduced; however, it is unclear whether this contributes to lung injury. To study the role of acute SOD3 reduction in lung injury, the SOD3 gene was deleted in adult mice by using the Cre-Lox technology.

View Article and Find Full Text PDF

Dihydropyridines and angiotensin converting enzyme inhibitor effects on superoxide and nitric oxide (NO) were compared in high glucose (20 mM, 24 h)-treated human Ea.hy 926 endothelial cells. High glucose stimulated superoxide both extracellularly (lucigenin chemiluminescence, cytochrome c reduction) and intracellularly (dihydrorhodamine 123 fluorescence).

View Article and Find Full Text PDF

The effects of dihydropyridine Ca2+ channel blockers (DHP) and ACE inhibitors on superoxide formation and nitric oxide (NO) bioavailability were compared in human EA.Hy926 endothelial cells (EC). EC were stimulated 4 h with angiotensin II (Ang II, 10 nM) +/- study drugs.

View Article and Find Full Text PDF