Publications by authors named "LoPachin R"

Cisplatin is a widely used and efficacious chemotherapeutic agent for treating solid tumors, yet it causes systemic end-organ damage that is often irreversible and detrimental to quality of life. This includes severe sensorineural hearing loss, hepatotoxicity, and renal injury. Based on the hard-soft acid-base theory, we recently developed two acetophenone-derived, enol-based compounds that directly interfere with the side effects of cisplatin.

View Article and Find Full Text PDF

Neurotoxicants may be widespread in the environment and can produce serious health impacts in the human population. Screening programs that use in vitro methods have generated data for thousands of chemicals. However, these methods often do not evaluate repeated or prolonged exposures, which are required for many neurotoxic outcomes.

View Article and Find Full Text PDF

The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 μM) with test chemical; %LDH and NLPN were measured after 48 h.

View Article and Find Full Text PDF

Xenobiotic electrophiles can form covalent adducts that may impair protein function, damage DNA, and may lead a range of adverse effects. Cumulative neurotoxicity is one adverse effect that has been linked to covalent protein binding as a Molecular Initiating Event (MIE). This paper describes a mechanistic in silico chemical screening approach for neurotoxicity based on Hard and Soft Acids and Bases (HSAB) theory.

View Article and Find Full Text PDF

Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients.

View Article and Find Full Text PDF

Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g.

View Article and Find Full Text PDF

Phloretin (Phl) is a dihydrochalcone flavonoid with significant cytoprotective properties; e.g., free radical trapping, electrophile scavenging.

View Article and Find Full Text PDF

Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.

View Article and Find Full Text PDF

Human populations are exposed to complex environmental mixtures of acrolein, methylvinyl ketone (MVK) and other type-2 alkenes. Many members of this chemical class are electrophiles that possess a common molecular mechanism of toxicity; i.e.

View Article and Find Full Text PDF

Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates.

View Article and Find Full Text PDF

Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile-nucleophile interactions mediate basal cytophysiological functions (e.g.

View Article and Find Full Text PDF

We have previously shown that 2-acetylcyclopentanone (2-ACP), an enolate-forming 1,3-dicarbonyl compound, provides protection in cell culture and animal models of oxidative stress. The pathophysiology of ischemia-reperfusion injury (IRI) involves oxidative stress, and, therefore, we determined the ability of 2-ACP to prevent this injury in a rat liver model. IRI was induced by clamping the portal vasculature for 45 minutes (ischemia phase), followed by recirculation for 180 minutes (reperfusion phase).

View Article and Find Full Text PDF

2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure.

View Article and Find Full Text PDF

Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets.

View Article and Find Full Text PDF

Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress.

View Article and Find Full Text PDF

Acrylamide (ACR) is an electrophilic unsaturated carbonyl derivative that produces neurotoxicity by forming irreversible Michael-type adducts with nucleophilic sulfhydryl thiolate groups on cysteine residues of neuronal proteins. Identifying specific proteins targeted by ACR can lead to a better mechanistic understanding of the corresponding neurotoxicity. Therefore, in the present study, the ACR-adducted proteome in exposed primary immortalized mesencephalic dopaminergic cells (N27) was determined using tandem mass spectrometry (LTQ-Orbitrap).

View Article and Find Full Text PDF

Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function.

Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles.

View Article and Find Full Text PDF

α,β-Unsaturated carbonyls make up an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction.

View Article and Find Full Text PDF

Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions.

View Article and Find Full Text PDF

Acrylamide (ACR) intoxication is associated with selective nerve terminal damage in the central and peripheral nervous systems. As a soft electrophile, ACR could form adducts with nucleophilic sulfhydryl groups on cysteine residues of kelch-like erythroid cell-derived protein with CNS homology-associated protein 1 (Keap1) leading to dissociation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 activation of the antioxidant-responsive element (ARE) and subsequent upregulated gene expression of phase II detoxification enzymes and anitoxidant proteins might provide protection in neuronal regions with transcriptional capabilities (e.

View Article and Find Full Text PDF

Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the β-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,β-unsaturated aldehyde.

View Article and Find Full Text PDF

2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day).

View Article and Find Full Text PDF

Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure.

View Article and Find Full Text PDF

2,5-Hexanedione (HD) is the metabolite implicated in n-hexane neurotoxicity. This gamma-diketone reacts with protein lysine amines to form 2,5-dimethylpyrrole adducts. Pyrrole adduction of neurofilaments (NF) and/or other axonal proteins was proposed as a critical step in the neuropathy.

View Article and Find Full Text PDF