There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated.
View Article and Find Full Text PDFThe purpose of this study was to determine the cause for flowability difference observed during drug product processing when different Metformin HCl drug substance batches of varying age were used. It was found that the lead time (age) between the final step (milling) in the manufacturing process of the Metformin HCl drug substance could be a factor. The lead time had an impact on flowability of Metformin/excipient blends during drug product processing even though these batches had no apparent differences in their release specifications.
View Article and Find Full Text PDFIdentification and monitoring of degradation products is a critical aspect of drug product stability programs. This process can present unique challenges when working with complex biopharmaceutical formulations that do not readily lend themselves to straightforward HPLC analysis. The therapeutic 34 amino acid parathyroid hormone fragment (PTH1-34) contains methionine (Met) residues at positions 8 and 18.
View Article and Find Full Text PDFThis paper examines how one may assess spectral changes with instrument configuration (or composition), in combination with the spectral changes in the measurement that are caused by experimental effects, and subsequently select an appropriate measurement modality for tablet content uniformity determination with near-infrared (NIR) spectroscopy. Two NIR spectrometers furnished with three configurations in the sample measurement interface were evaluated. One spectrometer, Bruker MPA (multiple purpose analyzer), was equipped with two measurement modalities, diffuse transmission (DT) and diffuse reflection based on integrating sphere optics (DR/IS).
View Article and Find Full Text PDFThe quality of raw materials used in a synthetic process needs to be properly controlled in order to ensure optimal reaction conversion and desired quality of the resulting product. For air and water sensitive raw materials, quantitative analysis can be a challenging task. Spectroscopic techniques possess advantages of simple operation, fast analysis, low consumable costs and high sample throughput for the analysis of reactive raw materials.
View Article and Find Full Text PDFUltra high-performance liquid chromatography (UHPLC) utilizes columns packed with sub-2-mum stationary-phase particles and allows operation with pressures of up to 15,000 psi to yield increased resolution, speed, and sensitivity versus conventional HPLC. This promising new technology was used for the analysis of energetic compounds (RDX, HMX and CL-20) and a selective method was developed on an Acquity UPLC. A fast UHPLC method was applied to determine alkaline hydrolysis reaction kinetics of major energetic compounds.
View Article and Find Full Text PDFNear-infrared calibration models were developed for the determination of content uniformity of pharmaceutical tablets containing 29.4% drug load for two dosage strengths (X and Y). Both dosage strengths have a circular geometry and the only difference is the size and weight.
View Article and Find Full Text PDFThe reaction of adenosylcobalamin-dependent dioldehydrase with 1,2-propanediol gives rise to a radical intermediate observable by EPR spectroscopy. This reaction requires a monovalent cation such as potassium ion. The radical signal arises from the formation of a radical pair comprised of the Co(II) of cob(II)alamin and a substrate-related radical generated upon hydrogen abstraction by the 5'-deoxyadenosyl radical.
View Article and Find Full Text PDFBiochemistry
November 2006
The binding and oxidation of ferrous iron were studied in wild-type reaction centers and in mutants that have been modified to be both highly oxidizing and able to bind manganese [Thielges et al. (2005) Biochemistry 44, 7389-7394]. After illumination of wild-type reaction centers, steady-state optical spectroscopy showed that the oxidized bacteriochlorophyll dimer, P+, could oxidize iron but only as a second-order reaction at iron concentrations above 100 microM.
View Article and Find Full Text PDFThe core structure of the photosynthetic reaction center is quasisymmetric with two potential pathways (called A and B) for transmembrane electron transfer. Both the pathway and products of light-induced charge separation depend on local electrostatic interactions and the nature of the excited states generated at early times in reaction centers isolated from Rhodobacter sphaeroides. Here transient absorbance measurements were recorded following specific excitation of the Q(y)() transitions of P (the special pair of bacteriochlorophylls), the monomer bacteriochlorophylls (B(A) and B(B)), or the bacteriopheophytins (H(A) and H(B)) as a function of both buffer pH and detergent in a reaction center mutant with the mutations L168 His to Glu and L170 Asn to Asp in the vicinity of P and B(B).
View Article and Find Full Text PDFThe adsorption of three organic eluent components (acetonitrile, methanol, and tetrahydrofuran) from water were measured on four phenyl-type bonded phases using the minor disturbance method. The thicknesses of organic layer enriched above the phenyl-type bonded ligands were assessed and interpreted. Acetonitrile and tetrahydrofuran showed multilayer formation while methanol showed monomolecular adsorption.
View Article and Find Full Text PDFA set of different phenyl-modified HPLC adsorbents were characterized in terms of their surface area, pore volume, and bonded phase volume using low temperature nitrogen adsorption (LTNA). Adsorbents pore volume and interparticle volume were also measured using HPLC. Comparison of the pore volumes assessed with LTNA and HPLC suggests a compact molecular arrangement for all bonded phases studied.
View Article and Find Full Text PDFThe retention behavior of inorganic liophilic anions in reversed-phase HPLC columns was studied. Usually, the addition of these ions to the mobile phase influences the retention of protonated basic analytes similar to the effect of amphiphilic ions (ion-pairing agents). The nature of this influence is the subject of this paper.
View Article and Find Full Text PDFPreviously, we investigated ubisemiquinone (SQ) EPR spectra associated with NADH-ubiquinone oxidoreductase (complex I) in the tightly coupled bovine heart submitochondrial particles (SMP). Based upon their widely differing spin relaxation rate, we distinguished SQ spectra arising from three distinct SQ species, namely SQ(Nf) (fast), SQ(Ns) (slow), and SQ(Nx) (very slow). The SQ(Nf) signal was observed only in the presence of the proton electrochemical gradient (deltamu(H)(+)), while SQ(Ns) and SQ(Nx) species did not require the presence of deltamu(H+).
View Article and Find Full Text PDFThe photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides has been modified such that the bacteriochlorophyll dimer, when it becomes oxidized after light excitation, is capable of oxidizing tyrosine residues. One factor in this ability is a high oxidation-reduction midpoint potential for the dimer, although the location and protein environment of the tyrosine residue appear to be critical as well. These factors were tested in a series of mutants, each of which contains changes, at residues L131, M160, M197, and M210, that give rise to a bacteriochlorophyll dimer with a midpoint potential of at least 800 mV.
View Article and Find Full Text PDFInorganic eluent additives affect the retention of protonated basic analytes in reversed-phase HPLC. This influence is attributed to the disruption of the analyte solvation-desolvation equilibria in the mobile phase, also known as "chaotropic effect". With an increase of counteranion concentration analyte retention increases with concomitant decrease in the tailing factor.
View Article and Find Full Text PDFThe pH and temperature dependences of tyrosine oxidation were measured in reaction centers from mutants of Rhodobacter sphaeroides containing a tyrosine residue near a highly oxidizing bacteriochlorophyll dimer. Under continuous illumination, a rapid increase in the absorption change at 420 nm was observed because of the formation of a charge-separated state involving the oxidized dimer and reduced primary quinone, followed by a slow absorption decrease attributed to tyrosine oxidation. Both the amplitude and rate of the slow absorption change showed a pH dependency, indicating that, at low pH, the rate of tyrosine oxidation is limited by the transfer of the phenolic proton to a nearby base.
View Article and Find Full Text PDFA small metal-binding protein (SmbP) with no known similarity to other proteins in current databases was isolated and characterized from the periplasm of Nitrosomonas europaea. The primary structure of this small (9.9 kDa) monomeric protein is characterized by a series of 10 repeats of a seven amino acid motif and an unusually high number of histidine residues.
View Article and Find Full Text PDFSuperoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C.
View Article and Find Full Text PDFBackground: Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein.
View Article and Find Full Text PDFThe protein YxaG from Bacillus subtilis, of previously unknown function, was found to have quercetin 2,3-dioxygenase activity when overexpressed in Escherichia coli. The enzyme converts the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide, indicating that it performs the same reaction and yields the same products as the well-characterized copper-containing quercetin 2,3-dioxygenase from Aspergillus. In contrast to the Aspergillus protein, YxaG contains iron, and the enzyme is sensitive to strong Fe(II) chelators, similar to the extensively studied catechol dioxygenases.
View Article and Find Full Text PDFThe reaction between Mn(6)L(12) and Mg(6)L(12) (L = N,N-diethylcarbamate) results in isolation of heteronuclear complexes Mn(n)Mg(6)(-)(n)L(12). A series was prepared with different doping factors n by varying the Mn/Mg ratio in the crystallization solutions. Single-crystal X-ray diffraction shows that MnMg(5)L(12) is isostructural with Mn(6)L(12) and Mg(6)L(12).
View Article and Find Full Text PDFReaction centers from the Y(L167) mutant of Rhodobacter sphaeroides, containing a highly oxidizing bacteriochlorophyll dimer and a tyrosine residue substituted at Phe L167, were compared to reaction centers from the Y(M) mutant, with a tyrosine at M164, and a quadruple mutant containing a highly oxidizing dimer but no nearby tyrosine residue. Distinctive features in the light-induced optical and EPR spectra showed that the oxidized bacteriochlorophyll dimer was reduced by Tyr L167 in the Y(L167) mutant, resulting in a tyrosyl radical, as has been found for Tyr M164 in the Y(M) mutant. In the Y(L167) mutant, the net proton uptake after formation of the tyrosyl radical and the reduced primary quinone ranged from +0.
View Article and Find Full Text PDFBiochemistry
September 2003
The transfer of an electron from exogenous manganese (II) ions to the bacteriochlorophyll dimer, P, of bacterial reaction centers was characterized for a series of mutants that have P/P(+) midpoint potentials ranging from 585 to 765 mV compared to 505 mV for wild type. Light-induced changes in optical and EPR spectra of the mutants were measured to monitor the disappearance of the oxidized dimer upon electron donation by manganese in the presence of bicarbonate. The extent of electron transfer was strongly dependent upon the P/P(+) midpoint potential.
View Article and Find Full Text PDF