Publications by authors named "Lo-Coco F"

Article Synopsis
  • Acute myeloid leukemia (AML) is a type of blood cancer with unclear genetic risk factors, and this study explores its hereditary aspects through a meta-analysis.
  • Researchers analyzed data from four studies involving 4,018 AML patients and 10,488 controls, finding significant genetic risk loci at two locations: 11q13.2 related to KMT5B and 6p21.32 related to HLA.
  • The study enhances understanding of AML development and highlights the roles of genes linked to histone methylation and immune response.
View Article and Find Full Text PDF

Background: The ZBTB16-RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor-α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all-trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis.

View Article and Find Full Text PDF

The SLIT-ROBO axis plays an important role in normal stem-cell biology, with possible repercussions on cancer stem cell emergence. Although the Promyelocytic Leukemia (PML) protein can regulate expression in the central nervous system, little is known about SLIT2 in acute promyelocytic leukemia. Hence, we aimed to investigate the levels of SLIT2 in acute promyelocytic leukemia (APL) and assess its biological activity in vitro and in vivo.

View Article and Find Full Text PDF

The results from the RATIFY trial (ClinicalTrials.gov: NCT00651261; CALGB 10603) showed that midostaurin combined with standard chemotherapy significantly improved outcomes in patients with FMS-like tyrosine kinase 3 (FLT3)-mutated acute myeloid leukemia (AML), compared with placebo. In this post hoc subgroup analysis from the trial, we evaluated the impact of midostaurin in 163 patients with FLT3-tyrosine kinase domain (TKD) mutations.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with FLT3-ITD mutations (FLT3-ITD) remains a therapeutic challenge, with a still high relapse rate, despite targeted treatment with tyrosine kinase inhibitors. In this disease, the CD34/CD123/CD25/CD99+ leukemic precursor cells (LPCs) phenotype predicts for FLT3-ITD-positivity. The aim of this study was to characterize the distribution of FLT3-ITD mutation in different progenitor cell subsets to shed light on the subclonal architecture of FLT3-ITD AML.

View Article and Find Full Text PDF

Acute promyelocytic leukaemia (APL) represents a modern success of precision medicine. However, fatalities occurring within the first 30 days of induction treatment, in particular intracranial haemorrhage (ICH), remain the main causes of death. We studied the clinico-biological characteristics of 13 patients with APL who experienced ICH.

View Article and Find Full Text PDF

Non-T cell activation linker (NTAL) is a lipid raft-membrane protein expressed by normal and leukemic cells and involved in cell signaling. In acute promyelocytic leukemia (APL), NTAL depletion from lipid rafts decreases cell viability through regulation of the Akt/PI3K pathway. The role of NTAL in APL cell processes, and its association with clinical outcome, has not, however, been established.

View Article and Find Full Text PDF

NRF2 (NF-E2 p45-related factor 2) orchestrates cellular adaptive responses to stress. Its quantity and subcellular location is controlled through a complex network and its activity increases during redox perturbation, inflammation, growth factor stimulation, and energy fluxes. Even before all-trans retinoic acid (ATRA) treatment era it was a common experience that acute promyelocytic leukemia (APL) cells are highly sensitive to first line chemotherapy.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is often characterized by the expression of fusion or mutant proteins that cause impaired differentiation and enhanced proliferation and survival. The presence of mutant proteins prone to misfolding can render the cells sensitive to endoplasmic reticulum (ER) stress and oxidative stress that could otherwise be overcome. Here, we show that the triple combination of the differentiating agent retinoic acid (RA), the ER stress-inducing drug tunicamycin (Tm), and arsenic trioxide (ATO), able to generate oxidative stress, leads to the death of AML cell lines expressing fusion proteins involving the gene MLL and the internal tandem duplication (ITD) in the FLT3 tyrosine kinase receptor.

View Article and Find Full Text PDF

Objectives: We investigated the validity of the recently developed European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30) summary score in patients with hematologic malignancies. Specifically, we evaluated the adequacy of a single-factor measurement model for the QLQ-C30, and its known-groups validity and responsiveness to change over time.

Methods: We used confirmatory factor analysis to test the single-factor model of the QLQ-C30, using baseline QLQ-C30 data (N = 2134).

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are highly heterogeneous myeloid diseases, characterized by frequent genetic/chromosomal aberrations. Olaparib is a potent, orally bioavailable poly(ADP-ribose) polymerase 1 (PARP1) inhibitor with acceptable toxicity profile, designed as targeted therapy for DNA repair defective tumors. Here, we investigated olaparib activity in primary cultures of bone marrow mononuclear cells collected from patients with MDS ( = 28).

View Article and Find Full Text PDF

In the context of precision medicine, assessment of minimal residual disease (MRD) has been used in acute myeloid leukemia (AML) to direct individual treatment programs, including allogeneic stem cell transplantation in patients at high-risk of relapse. One of the limits of this approach has been in the past the paucity of AML markers suitable for MRD assessment. Recently, the number of biomarkers has increased, due to the identification of highly specific leukemia-associated immunophenotypes by multicolor flow-cytometry, and of rare mutated gene sequences by digital droplet PCR, or next-generation sequencing (NGS).

View Article and Find Full Text PDF

We designed a trial in which postremission therapy of young patients with de novo acute myeloid leukemia (AML) was decided combining cytogenetics/genetics and postconsolidation levels of minimal residual disease (MRD). After induction and consolidation, favorable-risk patients (FR) were to receive autologous stem cell transplant (AuSCT) and poor-risk patients (PR) allogeneic stem cell transplant (AlloSCT). Intermediate-risk patients (IR) were to receive AuSCT or AlloSCT depending on the postconsolidation levels of MRD.

View Article and Find Full Text PDF

The hypomethylating agent azacitidine (AZA) is used to treat higher-risk myelodysplastic syndromes (HR-MDS) and elderly patients with low-blast count acute myeloid leukemia (LBC-AML). Platelet recovery is an early predictor of AZA response. We prospectively studied the expression profile of transcription factors, critical for late megakaryopoiesis and changes in their expression after AZA treatment in patients with HR-MDS and LBC-AML enrolled in the BMT-AZA trial (EudraCT number 2010-019673-15).

View Article and Find Full Text PDF

Despite the high probability of cure of patients with acute promyelocytic leukemia (APL), mechanisms of relapse are still largely unclear. Mutational profiling at diagnosis and/or relapse may help to identify APL patients needing frequent molecular monitoring and early treatment intervention. Using an NGS approach including a 31 myeloid gene-panel, we tested BM samples of 44 APLs at the time of diagnosis, and of 31 at relapse.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed an integrative score (ISAPL) for acute promyelocytic leukemia (APL) by combining gene mutation analysis and expression patterns linked to poor prognosis.
  • The study analyzed data from 159 patients, revealing that ISAPL could categorize patients into two distinct risk groups with significant differences in clinical outcomes such as early mortality and remission rates.
  • Findings suggest that implementing ISAPL in treatment plans for APL patients receiving ATRA and anthracycline-based chemotherapy could help tailor therapies to improve patient outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Arsenic trioxide and all-retinoic acid are now primary treatments for acute promyelocytic leukemia (APL), with the oral arsenic drug realgar-indigo naturalis formula (RIF) becoming available in China in 2009.
  • Over 5,000 APL patients in China have since benefited from RIF, which provides similar effectiveness to intravenous treatments but offers better safety, improved quality of life, and reduced medical costs.
  • The positive outcomes suggest a shift towards adopting outpatient postremission therapy for both low-risk and high-risk APL patients in clinical settings.
View Article and Find Full Text PDF

We present a case report of a patient with acute myeloid leukemia (AML) characterized by the simultaneous presence of nucleophosmin 1 (NPM1) mutation and the breakpoint cluster region-Abelson (BCR-ABL) fusion oncogene. Our findings emphasize the importance of routinely including BCR-ABL in the diagnostic workup of AML in order to offer to the patients the most appropriate risk category and treatment options.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML.

View Article and Find Full Text PDF

Although targeted therapies have proven effective and even curative in human leukaemia, resistance often ensues. IDH enzymes are mutated in ~20% of human AML, with targeted therapies under clinical evaluation. We here characterize leukaemia evolution from mutant IDH2 (mIDH2)-dependence to independence identifying key targetable vulnerabilities of mIDH2 leukaemia that are retained during evolution and progression from early to late stages.

View Article and Find Full Text PDF