Ru or Pt nanoparticles have been prepared following the organometallic approach and deposited onto the surface of mesoporous graphitic carbon nitride (mpg-CN). Three different Ru-based samples have also been compared to investigate the effect of 4-phenylpyridine as a stabilizing agent. The photocatalytic performance towards the hydrogen evolution reaction (HER) has been tested showing that all hybrid systems clearly outperform the photocatalytic activity of bare mpg-CN.
View Article and Find Full Text PDFIn this work, we describe the synthesis of a new N-heterocyclic carbene (NHC) ligand, derived from a hybrid pyrazole-imidazolium scaffold, namely 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-((S)-1-phenylethyl)-3H-imidazol-2-ylidene (L). This ligand has been used as a stabilizer for the organometallic synthesis of palladium(0) nanoparticles (Pd NPs). L presents a better stabilizing effect than its pre-carbenic HLCl counterpart, allowing the formation of isolated Pd NPs while HLCl yields aggregated ones.
View Article and Find Full Text PDFA new CNNC carbene-phthalazine tetradentate ligand has been synthesised, which in the reaction with [Ru(T)Cl] (T = trpy, tpm, bpea; trpy = 2,2';6',2''-terpyridine; tpm = tris(pyrazol-1-yl)methane; bpea = N,N-bis(pyridin-2-ylmethyl)ethanamine) in MeOH or iPrOH undergoes a C-N bond scission due to the nucleophilic attack of a solvent molecule, with the subsequent formation of the mononuclear complexes cis-[Ru(PhthaPz-OR)(trpy)X], [Ru(PhthaPz-OMe)(tpm)X] and trans,fac-[Ru(PhthaPz-OMe)(bpea)X] (X = Cl, n = 1; X = HO, n = 2; PhthaPz-OR = 1-(4-alkoxyphthalazin-1-yl)-3-methyl-1H-imidazol-3-ium), named 1a/2a (R = Me), 1b/2b (R = iPr), 3/4 and 5/6, respectively. Interestingly, regulation of the stability regions of different Ru oxidation states is obtained by different ligand combinations, going from 6, where Ru(iii) is clearly stable and mono-electronic transfers are favoured, to 2a/2b, where Ru(iii) is almost unstable with regard to its disproportionation. The catalytic performance of the Ru-OH complexes in chemical water oxidation at pH 1.
View Article and Find Full Text PDFA Ru-pentadentate polypyridyl complex [Ru(κ-N-bpy2PYMe)Cl] (1, bpy2PYMe = 1-(2-pyridyl)-1,1-bis(6-2,2'-bipyridyl)ethane) and its aqua derivative [Ru(κ-N-bpy2PYMe)(HO)] (2) were synthesized and characterized by experimental and computational methods. In MeOH, 1 exists as two isomers in different proportions, cis (70%) and trans (30%), which are interconverted under thermal and photochemical conditions by a sequence of processes: chlorido decoordination, decoordination/recoordination of a pyridyl group, and chlorido recoordination. Under oxidative conditions in dichloromethane, trans-1 generates a [Ru(κ-N-bpy2PYMe)Cl] intermediate after the exchange of a pyridyl ligand by a Cl counterion, which explains the trans/cis isomerization observed when the system is taken back to Ru(II).
View Article and Find Full Text PDFThree distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques.
View Article and Find Full Text PDFA new bis-facial dinuclear ruthenium complex, {[Ru(II)(bpy)]2(μ-bimp)(μ-Cl)}(2+), 2(2+), containing a hexadentate pyrazolate-bridging ligand (Hbimp) and bpy as auxiliary ligands has been synthesized and fully characterized in solution by spectrometric, spectroscopic, and electrochemical techniques. The new compound has been tested with regard to its capacity to oxidize water and alkenes. The in situ generated bis-aqua complex, {[Ru(II)(bpy)(H2O)]2(μ-bimp)}(3+), 3(3+), is an excellent catalyst for the epoxidation of a wide range of alkenes.
View Article and Find Full Text PDFJ Photochem Photobiol B
November 2015
Hydrogen release from the splitting of water by simply using sunlight as the only energy source is an old human dream that could finally become a reality. This process involves both the reduction and oxidation of water into hydrogen and oxygen, respectively. While the first process has been fairly overcome, the conversion of water into oxygen has been traditionally the bottleneck process hampering the development of a sustainable hydrogen production based on water splitting.
View Article and Find Full Text PDFThree dinucleating Ru-Cl complexes containing the hexadentate dinucleating ligand [1,1'-(4-methyl-1H-pyrazole-3,5-diyl)bis(1-(pyridin-2-yl)ethanol)] (Hpbl) and the meridional 2,2':6',2″-terpyridine ligand (trpy) have been prepared and isolated. These complexes include {[RuCl(trpy)]2(μ-pbl-κ-N(3)O)}(+) (1a(+)), {[RuCl(trpy)]2(μ-Hpbl-κ-N(3)O)}(2+) (1b(2+)), and {[RuCl(trpy)]2(μ-Hpbl-κ-N(2)O(2))}(2+) (1c(2+)) and were characterized by analytic and spectroscopic techniques. In addition, complexes 1b(2+) and 1c(2+) were characterized in the solid state by monocrystal X-ray diffraction analysis.
View Article and Find Full Text PDFA new tetradentate dinucleating ligand [1,1'-(4-methyl-1H-pyrazole-3,5-diyl)bis(1-(pyridin-2-yl)ethanol)] (Hpbl) containing an O/N mixed donor set of atoms has been synthesized and characterized by analytical and spectroscopic techniques. The Ru-Cl and Ru-aqua complexes containing this ligand of general formula [Ru(II)X(Hpbl)(trpy)](y+) (trpy = 2,2':6',2″-terpyridine; X = Cl, y = 1; X = H2O, y = 2) have been prepared and thoroughly characterized by spectroscopic and electrochemical techniques. The Ru-aqua complex 2 undergoes N → O linkage isomerization as observed electrochemically, and the related thermodynamic and kinetic parameters are extracted from cyclic voltammetry experiments together with DIGISIM, a CV simulation package.
View Article and Find Full Text PDFOne clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae.
View Article and Find Full Text PDFThe preparation of three new octadentate tetranucleating ligands made out of two Ru-Hbpp-based units [where Hbpp is 3,5(bispyridyl)pyrazole], linked by a xylyl group attached at the pyrazolate moiety, of general formula (Hbpp)(2)-u-xyl (u = p, m, or o) is reported, together with its dinucleating counterpart substituted at the same position with a benzyl group, Hbpp-bz. All of these ligands have been characterized with the usual analytical and spectroscopic techniques. The corresponding tetranuclear ruthenium complexes of general formula {[Ru(2)(trpy)(2)(L)](2)(μ-(bpp)(2)-u-xyl)}(n+) [L = Cl or OAc, n = 4; L = (H(2)O)(2), n = 6] and their dinuclear homologues {[Ru(2)(trpy)(2)(L)](μ-bpp-bz)}(n+) [L = Cl or OAc, n = 2; L = (H(2)O)(2), n = 3] have also been prepared and thoroughly characterized both in solution and in the solid state.
View Article and Find Full Text PDFTwo organic ligands based on bis-(2-pyridyl)pyrazole (Hbpp) functionalized with a para-methylenebenzoic acid (Hbpp-R(a)) or its ester derivative (Hbpp-R(e)) were prepared and characterized. The ester-functionalized ligand was then used to prepare a series of related dinuclear ruthenium complexes of general formula [Ru(II)2(L-L)(bpp-R(n))(trpy)2](m+) (L-L=mu-Cl, mu-acetato, or (H2O)2; n=e or a; trpy=2,2':6',2''-terpyridine; m=2 or 3). The complexes were characterized in solution by 1D and 2D NMR spectroscopy, UV/Vis spectroscopy, and electrochemical techniques.
View Article and Find Full Text PDFDuring the past four years we have witnessed a revolution in the field of water-oxidation catalysis, in which well-defined molecules are opening up entirely new possibilities for the design of more rugged and efficient catalysts. This revolution has been stimulated by two factors: the urgent need for clean and renewable fuel and the intrinsic human desire to mimic nature's reactions, in this case the oxygen-evolving complex (OEC) of the photosystem II (PSII). Herein we give a short general overview of the established basis for the oxidation of water to dioxygen as well as presenting the new developments in the field.
View Article and Find Full Text PDFThe main objective of this review is to give a general overview of the structure, electrochemistry (when available), and catalytic performance of the Ru complexes, which are capable of oxidizing water to molecular dioxygen, and to highlight their more relevant features. The description of the Ru catalysts is mainly divided into complexes that contain a Ru-O-Ru bridging group and those that do not. Finally a few conclusions are drawn from the global description of all of the catalysts presented here, and some guidelines for future catalyst design are given.
View Article and Find Full Text PDFThe complexation properties toward Hg(II) of six macrocyclic ligands, 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1), 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.
View Article and Find Full Text PDFThe properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.
View Article and Find Full Text PDFThe complete halide series of Ni(II) complexes containing the tetradentate macrocyclic ligand 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L), was fully characterized by X-ray diffraction.
View Article and Find Full Text PDFThe novel pyridine-containing 14-membered macrocycle 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L), which contains an N2S2 donor set, was synthesized, and its protonation behavior was studied by absorption titration with CH3SO3H.
View Article and Find Full Text PDFThree new fluorescent devices for protons and metal ions have been synthesized and characterized, and their photophysical properties have been explored; these are the macrocycles 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) and 7-(10-methyl-9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.
View Article and Find Full Text PDFThe reactivity of the phosphomacrocycle 6-phenyl-15-aza-6-phospha-3,9-dithiabicyclo[9,3,1]pentadeca-1(15), 11,13-triene (L) toward different Ni(II) salts has been studied. The reaction of L with 1 molar equiv of Ni(II) perchlorate in acetonitrile solution gives the complex [Ni(L)(CH(3)CN)(2)](ClO(4))(2) (1), which crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 12.
View Article and Find Full Text PDF