Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens.
View Article and Find Full Text PDFWater Distribution Networks (WDNs) are critical infrastructures that ensure a continuous supply of safe water to homes. In the face of challenges, like water scarcity, establishing resilient networks is imperative, especially in regions vulnerable to water crises. This study evaluates the resilience of network designs through graph theory, including its hydraulic feasibility using EPANET software, an aspect often overlooked.
View Article and Find Full Text PDFThis study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons.
View Article and Find Full Text PDFMonitoring SARS-CoV-2 spread is challenging due to asymptomatic infections, numerous variants, and population behavior changes from non-pharmaceutical interventions. We developed a Digital Twin model to simulate SARS-CoV-2 evolution in Catalonia. Continuous validation ensures our model's accuracy.
View Article and Find Full Text PDFBackground: Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments.
View Article and Find Full Text PDFWastewater networks are subject to several threats leading to wastewater leakages and public health hazards. External elements such as natural factors and human activities are common causes of wastewater leakages and require more in-depth analysis. Prevention and rehabilitation work is essential to secure wastewater networks and avoid pipe failures.
View Article and Find Full Text PDFIn recent years, wastewater-based epidemiology (WBE) has emerged as a valuable and cost-effective tool for monitoring the prevalence of COVID-19. Large-scale monitoring efforts have been implemented in numerous countries, primarily focusing on sampling at the entrance of wastewater treatment plants (WWTPs) to cover a large population. However, sampling at a finer spatial scale, such as at the neighborhood level (NGBs), pose new challenges, including the absence of composite sampling infrastructure and increased uncertainty due to the dynamics of small catchments.
View Article and Find Full Text PDFUrban agriculture is gaining attraction to become one of the pillars of the urban ecological transition and to increase food security in an urbanized planet. However, there is a lack of systematic quantification of the benefits provided by urban agriculture solutions. In this paper, we present an R package to estimate several indicators related to benefits of urban agriculture.
View Article and Find Full Text PDFWater scarcity and droughts are an increasing issue in many parts of the world. In the context of urban water systems, the transition to circularity may imply wastewater treatment and reuse. Planning and assessment of water reuse projects require decision-makers evaluating the cost and benefits of alternative scenarios.
View Article and Find Full Text PDFAlthough we have extensive datasets on the location and typology of industries, we do not know much on their generated and discharged wastewater. This lack of information compromises the achievement of the sustainable development goals focused on water (Sustainable Development Goal 6) in Europe and globally. Thus, our goal was to assess to which degree the chemical composition of industrial wastewater could be estimated based on the industry's typology according to its International Standard Industrial Classification of All Economic Activities (ISIC) class.
View Article and Find Full Text PDFN-nitrosamines (NAs), and N-nitrosodimethylamine (NDMA) in particular, are hazardous disinfection byproducts (DBPs) relevant when wastewater impacts drinking water sources and, in water reuse practices. Our study investigates the concentrations of NDMA and five additional NAs and their precursors in industrial wastewater effluents. Aiming to identify potential differences between industrial typologies, wastewaters from 38 industries belonging to 11 types of the UN International Standard Industrial Classification of All Economic Activities system (ISIC) were analysed.
View Article and Find Full Text PDFDuring the last three years, various restrictions have been set up to limit the transmission of the Coronavirus Disease (COVID-19). While these rules apply at a large scale (e.g.
View Article and Find Full Text PDFWastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) can be a useful complementary approach to assess human exposure to potentially harmful chemicals, including those from personal care and household products. In this work, a fully automated multiresidue method, based on on-line solid-phase extraction liquid chromatography - tandem mass spectrometry, was developed for the determination of 27 biomarkers of human exposure to selected chemicals from personal care and household products, including parabens, UV filters, phthalates and alternative plasticizers, phosphorous flame retardants/plasticizers (PFRs), and bisphenols. These biomarkers include both the parent compounds and their human metabolites.
View Article and Find Full Text PDFCurrent practice to enhance resilience in Water Resource Recovery Facilities (WRRFs) is to ensure redundancy or back-up for most critical equipment (e.g. pumps or blowers).
View Article and Find Full Text PDFSelecting sampling points to monitor traces of SARS-CoV-2 in sewage at the intra-urban scale is no trivial task given the complexity of the networks and the multiple technical, economic and socio-environmental constraints involved. This paper proposes two algorithms for the automatic selection of sampling locations in sewage networks. The first algorithm, is for the optimal selection of a predefined number of sampling locations ensuring maximum coverage of inhabitants and minimum overlapping amongst selected sites (static approach).
View Article and Find Full Text PDFImpacts from urban wastewater treatment plants (WWTP) to receiving riverine surface water bodies (SWBs) depend on the load of contaminants discharged, as well as on their dilution capacity. Yet, climate change impacts on such dilution capacity and ultimately on the SWBs ecological status remain unclear. Here, we assess SWBs dilution capacity across the European continent to identify most vulnerable areas using information from centralized European databases.
View Article and Find Full Text PDFHumans are nowadays exposed to numerous chemicals in our day-to-day life, including parabens, UV filters, phosphorous flame retardants/plasticizers, bisphenols, phthalates and alternative plasticizers, which can have different adverse effects to human health. Estimating human's exposure to these potentially harmful substances is, therefore, of paramount importance. Human biomonitoring (HBM) is the existing approach to assess exposure to environmental contaminants, which relies on the analysis of specific human biomarkers (parent compounds and/or their metabolic products) in biological matrices from individuals.
View Article and Find Full Text PDFThe source control of pharmaceuticals involves influencing the everyday consumption volume and compound choice. This paper evaluates how source control contributes to protecting the environmental health and decreasing the investment needs in urban wastewater infrastructure. Different levels of reduction in diclofenac consumption (as recommended by the European Medicines Agency) compensated by equivalent increases in naproxen consumption (a less environmentally harmful compound) are evaluated.
View Article and Find Full Text PDFLife cycle assessment (LCA) has been widely applied in the wastewater industry, but inconsistencies in assumptions and methods have made it difficult for researchers and practitioners to synthesize results from across studies. This paper presents a critical review of published LCAs related to municipal wastewater management with a focus on developing systematic guidance for researchers and practitioners to conduct LCA studies to inform planning, design, and optimization of wastewater management and infrastructure (wastewater treatment plants, WWTPs; collection and reuse systems; related treatment technologies and policies), and to support the development of new technologies to advance treatment objectives and the sustainability of wastewater management. The paper guides the reader step by step through LCA methodology to make informed decisions on i) the definition of the goal and scope, ii) the selection of the functional unit and system boundaries, iii) the selection of variables to include and their sources to obtain inventories, iv) the selection of impact assessment methods, and v) the selection of an effective approach for data interpretation and communication to decision-makers.
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic is, undeniably, a substantial shock to our civilization which has revealed the value of public services that relate to public health. Ensuring a safe and reliable water supply and maintaining water sanitation has become ever more critical during the pandemic. For this reason, researchers and practitioners have promptly investigated the impact associated with the spread of SARS-CoV-2 on water treatment processes, focusing specifically on water disinfection.
View Article and Find Full Text PDFThe so-called fourth revolution in the water sector will encounter the Big data and Artificial Intelligence (AI) revolution. The current data surplus stemming from all types of devices together with the relentless increase in computer capacity is revolutionizing almost all existing sectors, and the water sector will not be an exception. Combining the power of Big data analytics (including AI) with existing and future urban water infrastructure represents a significant untapped opportunity for the operation, maintenance, and rehabilitation of urban water infrastructure to achieve economic and environmental sustainability.
View Article and Find Full Text PDFThis paper presents a methodology for assessing the selection of stormwater control measures (SCM) within an urban drainage system that combines hydrological-hydraulic modelling and multi-criteria analysis (MCA). The methodology's utility is illustrated on urban catchment in the city of Girona, Spain. The SWMM model was applied and calibrated to simulate SCM scenarios.
View Article and Find Full Text PDFThis paper introduces the application of a fully dynamic air distribution model integrated with a biokinetic process model and a detailed process control model. By using a fully dynamic air distribution model, it is possible to understand the relationships between aeration equipment, control algorithms, process performance, and energy consumption, thus leading to a significantly more realistic prediction of water resource recovery facility (WRRF) performance. Consequently, this leads to an improved design of aeration control strategies and equipment.
View Article and Find Full Text PDFInvestments for upgrading wastewater treatment plants (WWTPs) with tertiary treatment to reduce microcontaminant loads in surface waters at a catchment scale can be daunting. These investments are highly sensitive to the selection of environmental quality standards (EQSs) for the target microcontaminants. Our hypothesis is that there is a balance between EQS selection and investment that needs to be considered in decision-making.
View Article and Find Full Text PDF