Publications by authors named "Lloyd A Greene"

Glioblastoma multiforme (GBM) is one of the most aggressive forms of brain tumor, characterized by a daunting prognosis with a life expectancy hovering around 12-16 months. Despite a century of relentless research, only a select few drugs have received approval for brain tumor treatment, largely due to the formidable barrier posed by the blood-brain barrier. The current standard of care involves a multifaceted approach combining surgery, irradiation, and chemotherapy.

View Article and Find Full Text PDF

We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the potential for clinical application, their mechanisms of action are not fully understood. Here, we show that one such peptide, Dpep, compromises glucose uptake and glycolysis in a cell context-dependent manner (in about two-thirds of cancer lines assessed).

View Article and Find Full Text PDF

Unlabelled: MYCN-amplified neuroblastoma often presents as a highly aggressive metastatic disease with a poor prognosis. Activating transcription factor 5 (ATF5) is implicated in neural cell differentiation and cancer cell survival. Here, we show that ATF5 is highly expressed in patients with stage 4 high-risk neuroblastoma, with increased expression correlating with a poorer prognosis.

View Article and Find Full Text PDF

Dpep is a cell-penetrating peptide targeting transcription factors ATF5, CEBPB, and CEBPD, and that selectively promotes the apoptotic death of multiple tumor cell types in vitro and in vivo. As such, it is a potential therapeutic. To better understand its mechanism of action, we used PLATE-seq to compare the transcriptomes of six cancer cell lines of diverse origins before and after Dpep exposure.

View Article and Find Full Text PDF

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.

View Article and Find Full Text PDF

Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells.

View Article and Find Full Text PDF

Transcription factors are key players underlying cancer formation, growth, survival, metastasis and treatment resistance, yet few drugs exist to directly target them. Here, we characterized the in vitro and in vivo anti-cancer efficacy of novel synthetic cell-penetrating peptides (Bpep and Dpep) designed to interfere with the formation of active leucine-zipper-based dimers by CEBPB and CEBPD, transcription factors implicated in multiple malignancies. Both peptides similarly promoted apoptosis of multiple tumor lines of varying origins, without such effects on non-transformed cells.

View Article and Find Full Text PDF

Identifying disease-causing pathways and drugs that target them in Parkinson's disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD.

View Article and Find Full Text PDF

The basic leucine zipper transcription factor ATF5 is overexpressed in many tumor types and interference with its expression or function inhibits cancer cell survival. As a potential therapeutic approach to exploit these findings, we created dominant-negative (DN) ATF5 forms lacking DNA-binding ability that retain the ATF5 leucine zipper, and thus associate with and sequester ATF5's requisite leucine zipper-binding partners. Preclinical studies with DN-ATF5, including a cell-penetrating form, show and efficacy in compromising cancer cell survival.

View Article and Find Full Text PDF

Survivin (BIRC5, product of the BIRC5 gene) is highly expressed in many tumor types and has been widely identified as a potential target for cancer therapy. However, effective anti-survivin drugs remain to be developed. Here we report that both vector-delivered and cell-penetrating dominant-negative (dn) forms of the transcription factor ATF5 that promote selective death of cancer cells in vitro and in vivo cause survivin depletion in tumor cell lines of varying origins.

View Article and Find Full Text PDF

Mutations in the E3 ubiquitin ligase parkin are the most common known cause of autosomal recessive Parkinson's disease (PD), and parkin depletion may play a role in sporadic PD. Here, we sought to elucidate the mechanisms by which stress decreases parkin protein levels using cultured neuronal cells and the PD-relevant stressor, L-DOPA. We find that L-DOPA causes parkin loss through both oxidative stress-independent and oxidative stress-dependent pathways.

View Article and Find Full Text PDF

Akt kinases are key signaling components in proliferation-competent and post-mitotic cells. Here, we sought to create a conditionally-inducible form of active Akt for both in vitro and in vivo applications. We fused a ligand-responsive Destabilizing Domain (DD) derived from E.

View Article and Find Full Text PDF

Activating Transcription Factor 4 (ATF4) has been postulated as a key regulator of learning and memory. We previously reported that specific hippocampal ATF4 downregulation causes deficits in synaptic plasticity and memory and reduction of glutamatergic functionality. Here we extend our studies to address ATF4's role in neuronal excitability.

View Article and Find Full Text PDF

Activating transcription factor 4 (ATF4) plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF) promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels.

View Article and Find Full Text PDF

Reduced function of parkin appears to be a central pathogenic event in Parkinson disease (PD). Increasing parkin levels enhances survival in models of PD-related neuronal death and is a promising therapeutic objective. Previously, we demonstrated that the transcription factor ATF4 promotes survival in response to PD-mimetic stressors by maintaining parkin levels.

View Article and Find Full Text PDF

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes.

View Article and Find Full Text PDF

Neuron death during development and in Alzheimer's disease (AD) is associated with aberrant regulation/induction of cell cycle proteins. However, the proximal events in this process are unknown. Cell cycle initiation requires dephosphorylation of cyclin-dependent kinases by cell division cycle 25A (Cdc25A).

View Article and Find Full Text PDF

In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a stabilizer of the Rho GTPases including Cdc42. This effect is rescued by an shATF4-resistant active form of ATF4, but not by a mutant that lacks transcriptional activity.

View Article and Find Full Text PDF

Purpose: Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1.

View Article and Find Full Text PDF

Malignant gliomas have poor prognosis and urgently require new therapies. Activating Transcription Factor 5 (ATF5) is highly expressed in gliomas, and interference with its expression/function precipitates targeted glioma cell apoptosis in vitro and in vivo. We designed a novel deliverable truncated-dominant-negative (d/n) form of ATF5 fused to a cell-penetrating domain (Pen-d/n-ATF5-RP) that can be intraperitoneally/subcutaneously administered to mice harboring malignant gliomas generated; (1) by PDGF-B/sh-p53 retroviral transformation of endogenous neural progenitor cells; and (2) by human U87-MG xenografts.

View Article and Find Full Text PDF

Unlabelled: Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients.

View Article and Find Full Text PDF

Prior studies suggested that the transcription factor ATF4 negatively regulates synaptic plastic and memory. By contrast, we provide evidence from direct in vitro and in vivo knockdown of ATF4 in rodent hippocampal neurons and from ATF4-null mice that implicate ATF4 as essential for normal synaptic plasticity and memory. In particular, hippocampal ATF4 downregulation produces deficits in long-term spatial memory and behavioral flexibility without affecting associative memory or anxiety-like behavior.

View Article and Find Full Text PDF

The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology.

View Article and Find Full Text PDF

Neuronal apoptotic death generally requires de novo transcription, and activation of the transcription factor c-Jun has been shown to be necessary in multiple neuronal death paradigms. Caspase-2 has been implicated in death of neuronal and non-neuronal cells, but its relationship to transcriptional activation has not been clearly elucidated. In the present study, using two different neuronal apoptotic paradigms, β-amyloid treatment and NGF (nerve growth factor) withdrawal, we examined the hierarchical role of caspase-2 activation in the transcriptional control of neuron death.

View Article and Find Full Text PDF