Publications by authors named "Llordes A"

Composite electrolytes, owing to their ability to combine both polymeric and ceramic properties are promising candidates for Solid-State-Batteries (SSBs). In this paper, we assess the effect of ceramic fillers (Li Al Ti P O , Li Ga La Zr O and Al O ) in a poly(ethylene oxide carbonate)-LiTFSI matrix. First, the role of the filler chemistry on thermal and electrochemical properties is evaluated: reduced polymer crystallinity leads to an increased ionic conductivity at low temperatures; and the ionic conductivity at low temperatures (<30 °C) is improved for LLZO filler particles.

View Article and Find Full Text PDF

Garnet-structured LiLaZrO is a promising solid electrolyte for next-generation solid-state Li batteries. However, sufficiently fast Li-ion mobility required for battery applications only emerges at high temperatures, upon a phase transition to cubic structure. A well-known strategy to stabilize the cubic phase at room temperature relies on aliovalent substitution; in particular, the substitution of Li by Al and Ga ions.

View Article and Find Full Text PDF

All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO cathode, and garnet ceramic electrolyte.

View Article and Find Full Text PDF

Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbO) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbO glass) via acid-catalysed condensation of polyniobate clusters.

View Article and Find Full Text PDF

Electrochromic devices, which dynamically change colour under applied potential, are widely studied for use in energy-efficient smart windows. To improve the viability of smart windows, many researchers are utilizing nanomaterials, which can provide electrochromic devices with improved colouration efficiencies, faster switching times, longer cycle lives, and potentially reduced costs. In an effort to demonstrate a new type of electrochromic device that goes beyond the capabilities of commonly used electrochromic materials, researchers have turned to plasmonic transparent conductive oxide (TCO) nanocrystals.

View Article and Find Full Text PDF

Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency.

View Article and Find Full Text PDF

Through synthesizing colloidal nanocrystals (NCs) in the organic phase, chemists gain fine control over their composition, size, and shape. Strategies for arranging them into ordered superlattices have followed closely behind synthetic advances. Nonetheless, the same hydrophobic ligands that help their assembly also severely limit interactions between adjacent nanocrystals.

View Article and Find Full Text PDF

Amorphous metal oxides are useful in optical, electronic and electrochemical devices. The bonding arrangement within these glasses largely determines their properties, yet it remains a challenge to manipulate their structures in a controlled manner. Recently, we developed synthetic protocols for incorporating nanocrystals that are covalently bonded into amorphous materials.

View Article and Find Full Text PDF

Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa(2)Cu(3)O(7) matrix.

View Article and Find Full Text PDF

Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals.

View Article and Find Full Text PDF

Localized surface plasmon absorption features arise at high doping levels in semiconductor nanocrystals, appearing in the near-infrared range. Here we show that the surface plasmons of tin-doped indium oxide nanocrystal films can be dynamically and reversibly tuned by postsynthetic electrochemical modulation of the electron concentration. Without ion intercalation and the associated material degradation, we induce a > 1200 nm shift in the plasmon wavelength and a factor of nearly three change in the carrier density.

View Article and Find Full Text PDF

Power applications of superconductors will be tremendously boosted if an effective method for magnetic flux immobilization is discovered. Here, we report the most efficient vortex-pinning mechanism reported so far which, in addition, is based on a low-cost chemical solution deposition technique. A dense array of defects in the superconducting matrix is induced in YBa(2)Cu(3)O(7-x)-BaZrO(3) nanocomposites where BaZrO(3) nanodots are randomly oriented.

View Article and Find Full Text PDF