Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms.
View Article and Find Full Text PDFPreviously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR). We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity.
View Article and Find Full Text PDFNovel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex.
View Article and Find Full Text PDFJ Immunol Methods
February 2012
Phage display technology is a powerful tool for the identification of novel antibodies for drug discovery. Phage display libraries have been constructed with massive diversity, but their use may be hindered by limited antibody display levels when rescued with the M13KO7 helper phage. Variants of M13KO7 have been constructed previously that increase the levels of display of rescued phage, but all produce phage that display multiple copies of the antibody fragment on their surface and have reduced titer and infectivity.
View Article and Find Full Text PDF