The goal of this research was to elucidate the relationship between WHO 2016 molecular classifications of newly diagnosed, nonenhancing lower grade gliomas (LrGG), tissue sample histopathology, and magnetic resonance (MR) parameters derived from diffusion, perfusion, and H spectroscopic imaging from the tissue sample locations and the entire tumor. A total of 135 patients were scanned prior to initial surgery, with tumor cellularity scores obtained from 88 image-guided tissue samples. MR parameters were obtained from corresponding sample locations, and histograms of normalized MR parameters within the T2 fluid-attenuated inversion recovery lesion were analyzed in order to evaluate differences between subgroups.
View Article and Find Full Text PDFBackground: Rare multicentric lower-grade gliomas (LGGs) represent a unique opportunity to study the heterogeneity among distinct tumor foci in a single patient and to infer their origins and parallel patterns of evolution.
Methods: In this study, we integrate clinical features, histology, and immunohistochemistry for 4 patients with multicentric LGG, arising both synchronously and metachronously. For 3 patients we analyze the phylogeny of the lesions using exome sequencing, including one case with a total of 8 samples from the 2 lesions.
Proc Natl Acad Sci U S A
October 2017
mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 mutant LGGs.
View Article and Find Full Text PDFInfiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM).
View Article and Find Full Text PDFLow-grade gliomas can vary widely in disease course and therefore patient outcome. While current characterization relies on both histological and molecular analysis of tissue resected during surgery, there remains high variability within glioma subtypes in terms of response to treatment and outcome. In this study we hypothesized that parameters obtained from magnetic resonance data would be associated with progression-free survival for patients with recurrent low-grade glioma.
View Article and Find Full Text PDFBackground: Patients with low-grade glioma (LGG) have a relatively long survival, and a balance is often struck between treating the tumor and impacting quality of life. While lesions may remain stable for many years, they may also undergo malignant transformation (MT) at the time of recurrence and require more aggressive intervention. Here we report on a state-of-the-art multiparametric MRI study of patients with recurrent LGG.
View Article and Find Full Text PDFRecent findings show that exposure to temozolomide (TMZ), a DNA-damaging drug used to treat glioblastoma (GBM), can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic GBM cell populations differing only in expression of the DNA repair protein methyltransferase (MGMT), a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-((13))C]-pyruvate-based MRI was used to monitor temporal effects on pyruvate metabolism in parallel with DNA-damage responses and tumor cell growth.
View Article and Find Full Text PDFTumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients.
View Article and Find Full Text PDFRecent studies have indicated that a significant survival advantage is conferred to patients with gliomas whose lesions harbor mutations in the genes isocitrate dehydrogenase 1 and 2 (IDH1/2). IDH1/2 mutations result in aberrant enzymatic production of the potential oncometabolite D-2-hydroxyglutarate (2HG). Here, we report on the ex vivo detection of 2HG in IDH1-mutated tissue samples from patients with recurrent low-grade gliomas using the nuclear magnetic resonance technique of proton high-resolution magic angle spinning spectroscopy.
View Article and Find Full Text PDF