Background: Acute inflammation impairs reverse cholesterol transport (RCT) and reduces high-density lipoprotein (HDL) function in vivo. This study hypothesized that obesity-induced inflammation impedes RCT and alters HDL composition, and investigated if dietary replacement of saturated (SFA) for monounsaturated (MUFA) fatty acids modulates RCT.
Methods And Results: Macrophage-to-feces RCT, HDL efflux capacity, and HDL proteomic profiling was determined in C57BL/6j mice following 24 weeks on SFA- or MUFA-enriched high-fat diets (HFDs) or low-fat diet.
Objective: Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights.
Approach And Results: Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs).
An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles.
View Article and Find Full Text PDFObjectives: Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans.
Methods And Results: We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-related parameters in vivo. Endotoxemia induced remodelling of HDL with depletion of pre-β1a HDL particles determined by 2-D gel electrophoresis (-32.
Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown.
View Article and Find Full Text PDFStudies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD.
View Article and Find Full Text PDFGiven the increased prevalence of cardiovascular disease in the world, the search for genetic variations that impact risk factors associated with the development of this disease continues. Multiple genetic association studies demonstrate that procollagen C-proteinase enhancer 2 (PCPE2) modulates HDL levels. Recent studies revealed an unexpected role for this protein in the proteolytic processing of pro-apolipoprotein (apo) A-I by enhancing the cleavage of the hexapeptide extension present at the N-terminus of apoA-I.
View Article and Find Full Text PDFEfflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy.
View Article and Find Full Text PDFBackground: High-density lipoprotein (HDL) may provide cardiovascular protection by promoting reverse cholesterol transport from macrophages. We hypothesized that the capacity of HDL to accept cholesterol from macrophages would serve as a predictor of atherosclerotic burden.
Methods: We measured cholesterol efflux capacity in 203 healthy volunteers who underwent assessment of carotid artery intima-media thickness, 442 patients with angiographically confirmed coronary artery disease, and 351 patients without such angiographically confirmed disease.
Objective: The goal of this study was to determine the influence of apolipoprotein A-I (apoA-I) tertiary structure domain properties on the antiatherogenic properties of the protein. Two chimeric hybrids with the N-terminal domains swapped (human-mouse apoA-I and mouse-human apoA-I) were expressed in apoA-I-null mice with adeno-associated virus (AAV) and used to study macrophage reverse cholesterol transport (RCT) in vivo.
Methods And Results: The different apoA-I variants were expressed in apoA-I-null mice that were injected with [H(3)]cholesterol-labeled J774 mouse macrophages to measure RCT.
Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.
View Article and Find Full Text PDFIn our effort to find diagnostic markers and to develop therapeutic approaches for prostate cancer, we have identified an mAb that is capable of binding to a cell surface antigen specifically expressed on both androgen-dependent and androgen-independent prostate cancer cells. Immunohistological studies revealed that this mAb, called F77, stained 112 of 116 primary and 29 of 34 metastatic human prostate cancer specimens. Although the mAb F77 alone directly promotes prostate cancer cell death, it also mediates complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity.
View Article and Find Full Text PDFObjective: We measured efflux from macrophages to apolipoprotein B-depleted serum from 263 specimens and found instances in which serum having similar high-density lipoprotein cholesterol (HDL-C) differed in their efflux capacity. Thus, we wanted to elucidate why efflux capacity could be independent of total HDL-C or apolipoprotein A-I (apoA-I).
Methods And Results: To understand why sera with similar HDL-C or apoA-I could differ in total efflux capacity, we assessed their ability to promote efflux via the pathways expressed in cAMP-treated J774 macrophages.
Objective: Reconstituted high-density lipoprotein (rHDL) is of interest as a potential novel therapy for atherosclerosis because of its ability to promote free cholesterol (FC) mobilization after intravenous administration. We performed studies to identify the underlying molecular mechanisms by which rHDL promote FC mobilization from whole body in vivo and macrophages in vitro.
Methods And Results: Wild-type (WT), SR-BI knockout (KO), ABCA1 KO, and ABCG1 KO mice received either rHDL or phosphate-buffered saline intravenously.
Arterioscler Thromb Vasc Biol
October 2009
Objective: To compare the abilities of human wild-type apoA-I (WT apoA-I) and human apoA-I(Milano) (apoA-I(M)) to promote macrophage reverse cholesterol transport (RCT) in apoA-I-null mice infected with adeno-associated virus (AAV) expressing either WT apoA-I or apoA-I(M).
Methods And Results: WT apoA-I- or apoA-I(M)-expressing mice were intraperitoneally injected with [H(3)]cholesterol-labeled J774 mouse macrophages. After 48 hours, no significant difference was detected in the amount of cholesterol removed from the macrophages and deposited in the feces via the RCT pathway between the WT apoA-I and apoA-I(M) groups.
Background: Inflammation is proposed to impair reverse cholesterol transport (RCT), a major atheroprotective function of high-density lipoprotein (HDL). The present study presents the first integrated functional evidence that inflammation retards numerous components of RCT.
Methods And Results: We used subacute endotoxemia in the rodent macrophage-to-feces RCT model to assess the effects of inflammation on RCT in vivo and performed proof of concept experimental endotoxemia studies in humans.
Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2009
Objective: Apolipoprotein F (ApoF) is a protein component of several lipoprotein classes including HDL. It is also known as lipid transfer inhibitor protein (LTIP) based on its ability to inhibit lipid transfer between lipoproteins ex vivo. We sought to investigate the role of ApoF in HDL metabolism.
View Article and Find Full Text PDFBackground: Niacin, the lipid-regulating agent with the longest therapeutic experience, has been demonstrated to both raise high-density lipoprotein cholesterol (HDL-C) levels and to diminish the risk of atherosclerosis and its vascular complications.
Objective: The present study was carried out to explore niacin's effect on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux, a component of reverse cholesterol transport, using an in vitro model system.
Methods: Thirty frozen samples from a large randomized, multicenter trial comparing crystalline niacin, extended-release niacin (Niaspan), and placebo were analyzed for SR-BI efflux.
Scavenger receptor class B type I (SR-BI) facilitates the uptake of HDL cholesteryl esters (CEs) in a two-step process involving binding of HDL to its extracellular domain and transfer of HDL core CEs to a metabolically active membrane pool, where they are subsequently hydrolyzed by a neutral CE hydrolase. Recently, we characterized a mutant, G420H, which replaced glycine 420 in the extracellular domain of SR-BI with a histidine residue and had a profound effect on SR-BI function. The G420H mutant receptor exhibited a reduced ability to mediate selective HDL CE uptake and was unable to deliver HDL CE for hydrolysis, despite the fact that it retained the ability to bind HDL.
View Article and Find Full Text PDFOur objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux.
View Article and Find Full Text PDFThe binding of HDL to scavenger receptor-BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS.
View Article and Find Full Text PDFIn mammalian cells scavenger receptor class B, type I (SR-BI), mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester into hepatic and steroidogenic cells. In addition, SR-BI has a variety of effects on plasma membrane properties including stimulation of the bidirectional flux of free cholesterol (FC) between cells and HDL and changes in the organization of plasma membrane FC as indicated by increased susceptibility to exogenous cholesterol oxidase. Recent studies in SR-BI-deficient mice and in SR-BI-expressing Sf9 insect cells showed that SR-BI has significant effects on plasma membrane ultrastructure.
View Article and Find Full Text PDFJ Biol Chem
March 2004
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles.
View Article and Find Full Text PDFScavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites.
View Article and Find Full Text PDF