To identify the novel genes involved in chemoresistance in head and neck squamous cell carcinoma (HNSCC), we explored the expression profiles of the following cisplatin (CDDP) resistant (R) versus parental (sensitive) cell lines by RNA-sequencing (RNA-seq): JHU029, HTB-43 and CCL-138. Using the parental condition as a control, 30 upregulated and 85 downregulated genes were identified for JHU029-R cells; 263 upregulated and 392 downregulated genes for HTB-43-R cells, and 154 upregulated and 68 downregulated genes for CCL-138-R cells. Moreover, we crossed-checked the RNA-seq results with the proteomic profiles of HTB-43-R (versus HTB-43) and CCL-138-R (versus CCL-138) cell lines.
View Article and Find Full Text PDFSemin Cancer Biol
November 2022
Tumors refractory to conventional therapy belong to specific subpopulations of cancer cells, which have acquired a higher number of mutations/epigenetic changes than the majority of cancer cells. This property provides them the ability to become resistant to therapy. Aberrant expression of certain RNA-binding proteins (RBPs) can regulate the sensitivity of tumor cells to chemotherapeutic drugs by binding to specific regions present in the 3´-UTR of certain mRNAs to promote or repress mRNA translation or by interacting with other proteins (including RBPs) and non-coding RNAs that are part of ribonucleoprotein complexes.
View Article and Find Full Text PDFmRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment.
View Article and Find Full Text PDFDrug resistance continues to be one of the major challenges to cure cancer. As research in this field evolves, it has been proposed that numerous bioactive molecules might be involved in the resistance of cancer cells to certain chemotherapeutics. One well-known group of lipids that play a major role in drug resistance are the sphingolipids.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2022
The tetraspanin (TSPAN) family constitutes a poorly explored family of membrane receptors involved in various physiological processes, with relevant roles in anchoring multiple proteins, acting as scaffolding proteins, and cell signaling. Recent studies have increasingly demonstrated the involvement of TSPANs in cancer. In particular, tetraspanin 1 (also known as TSPAN1, NET-1, TM4C, C4.
View Article and Find Full Text PDFSphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described.
View Article and Find Full Text PDFTo characterize the mechanisms that govern chemoresistance, we performed a comparative proteomic study analyzing head and neck squamous cell carcinoma (HNSCC) cells: CCL-138 (parental), CCL-138-R (cisplatin-resistant), and cancer stem cells (CSCs). Syntenin-1 (SDCBP) was upregulated in CCL-138-R cells and CSCs over parental cells. SDCBP depletion sensitized biopsy-derived and established HNSCC cell lines to cisplatin (CDDP) and reduced CSC markers, Src activation being the main SDCBP downstream target.
View Article and Find Full Text PDFGlycolytic metabolism is closely involved in physiological homeostasis and pathophysiological states. Among glycolytic enzymes, phosphoglycerate mutase (PGAM) has been reported to exert certain physiological role in vitro, whereas its impact on glucose metabolism in vivo remains unclear. Here, we report the characterization of Pgam1 knockout mice.
View Article and Find Full Text PDFCancer treatment options have evolved significantly in the past few years. From the initial surgical procedures, to the latest next-generation technologies, we are now in the position to analyze and understand tumors in a one-by-one basis and use that to our advantage to provide with individualized treatment options that may increase patient survival. In this review, we will focus on how tumor profiling has evolved over the past decades to deliver more efficient and personalized treatment options, and how novel technologies can help us envisage the future of precision oncology toward a better management and, ultimately, increased survival.
View Article and Find Full Text PDFBreast cancer is the cancer with the most incidence and mortality in women. microRNAs are emerging as novel prognosis/diagnostic tools. Our aim was to identify a serum microRNA signature useful to predict cancer development.
View Article and Find Full Text PDFCancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure.
View Article and Find Full Text PDFAdvances in immunotherapy have achieved remarkable clinical outcomes in tumors with low curability, but their effects are limited, and increasing evidence has implicated tumoral and non-tumoral components of the tumor microenvironment as critical mediators of cancer progression. At the same time, the clinical successes achieved with minimally invasive and optically-guided surgery and image-guided and ablative radiation strategies have been successfully implemented in clinical care. More effective, localized and safer treatments have fueled strong research interest in radioimmunotherapy, which has shown the potential immunomodulatory effects of ionizing radiation.
View Article and Find Full Text PDFCold-inducible RNA binding protein (CIRBP) is a stress-responsive protein that promotes cancer development and inflammation. Critical to most CIRBP functions is its capacity to bind and posttranscriptionally modulate mRNA. However, a transcriptome-wide analysis of CIRBP mRNA targets in cancer has not yet been performed.
View Article and Find Full Text PDFSensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients.
View Article and Find Full Text PDFDysregulated glycolysis, including the cancerous Warburg effect, is closely involved in pathological mechanisms of diseased states. Among glycolytic enzymes, phosphoglycerate mutase (PGAM) has been known to exert certain physiological impact in vitro, whereas its regulatory role on glycolysis remains unclear. Here, we identified that PGAM plays a key role in regulating glycolysis in cancer cells but not in standard cells.
View Article and Find Full Text PDFSemin Cancer Biol
February 2020
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood.
View Article and Find Full Text PDFA survey of in vivo fertility data from 31 pig farms distributed worldwide was conducted to determine whether stimulating boar semen with LED-based red light increases its reproductive performance following artificial insemination (AI). Red-light stimulation with MaXipig was found to increase farrowing rates (mean ± SEM, control: 87.2% ± 0.
View Article and Find Full Text PDFTo identify the putative relevance of autophagy in laryngeal cancer, we performed an immunohistochemistry study to analyze the expression of the proteins involved in this process, namely, LC3, ATG5 and p62/SQSTM1. Additionally, Prostate tumor-overexpressed gene 1 protein (PTOV1) was included due to its potential relevance in laryngeal cancer. Moreover, as cancer resistance might involve autophagy in some circumstances, we studied the intrinsic drug resistance capacity of primary tumor cultures derived from 13 laryngeal cancer biopsies and their expression levels of LC3, ATG5, p62 and PTOV1.
View Article and Find Full Text PDFBackground: Although considerable progress has been made in the last 30 years in the treatment of cleft palate (CP), a multidisciplinary approach combining examinations by a paediatrician, maxillofacial surgeon, otolaryngologist and speech and language pathologist followed by surgical operation is still required. In this work, we performed an observational cross-sectional study to determine whether the CP grade or number of ventilation tubes received was associated with tympanic membrane abnormalities, hearing loss or speech outcomes.
Methods: Otologic, audiometric, tympanometric and speech evaluations were performed in a cohort of 121 patients (children > 6 years) who underwent an operation for CP at the Vall d'Hebron Hospital, Barcelona from 2000 to 2014.